

CSC's Model LM-3 Logic Monitor. It's a new breed of test instrument. Here in a single compact package are forty high-speed high-impedance precisionthreshold logic state indicators with triggerable latching modes.

Just connect the LM-3 Logic Monitor to any combination of bus lines, test points, IC pins or other nodes. Pick the operating mode: the LM-3's display follows up to 40 channels of data in RUN; stores and displays 40 data channels when triggered in LATCH; or updates its latched data display with every trigger in RETRIG. There's even a pushbutton to manually latch the display.

The applications are endless Connect to the pins of a processor, UART, memory - any IC-for device tests. Follow the action of a logic tree by
connecting to selected gates, flip-flops, registers, etc. Monitor up to 40 bus lines, checking data, address, I/O, flags anything digital. Choose 40 test points on a single board, or perform side-by-side comparisons with a known-good board

More? More than we have room to tell. Compatibility with past, present and future logic families from ECL to TTL to CMOS. Constant input impedance at every threshold level. 5 MHz channel response. A comprehensive instruction/ application manual as innovative as the instrument itself. Plus cables and connectors to make the package complete.

40 logic channels. Triggerable memory. And more. At \$585*, it's probably underpriced. Call now and get the full story.

Insight.

Smarter tools for testing and design.
CONTINENTAL SPECIALTIES CORPORATION

When Roger started pitching for his little league team, he was just another player. And his arm was no better than anybody elses.

Two months later a small miracle took place. Roger was the best pitcher on the team and had a fast ball that was the most powerful in his league - and all thanks to his father.

Roger's success came from a radar gunthe same type device used by police to catch speeding motorists.

SCRAMBLED EGGS

The minute Roger's father was able to clock his son's pitching speed, Roger was subconsciously given a daily challenge of pitching harder and faster to beat his previous speed. The more he practiced, the better he got.

Roger's father paid $\$ 2,000$ for the radar gun. But in his upper class neighborhood, it wasn't too unusual for a father to spend that kind of money to help his son.

SPEEDING CITATION

A large manufacturer of radar-type security devices saw what Roger's father had done and felt that there was a definite need to produce a low cost radar unit designed exclusively for the sports market.
The company, Solfan Systems, developed the Sports Radar gun-a major breakthrough in projectile speed detection as well as electronic radar circuitry.

Using the doppler effect of radar and phased-lock-loop circuits, Solfan has developed the Sports Radar gun that compares to even the most sophisticated of police radar units that cost $\$ 2,000$.

OVERLAND EXPRESS

The Sports Radar gun is held in your hand and pointed toward the pitcher. You turn it on, press the ready button, and point the gun. The gun will ignore the moving arm of the pitcher but will lock in on the moving ball. The radar unit would then follow the ball for approximately ten milliseconds and the built in computer measures and computes the speed and flashes the reading on the display. The gun registers the speed to the exact mileage within one-half miles per hour.

The gun can be mounted on a tripod so that the person taking the measurements can also catch the ball.
In tennis, the speed of the serve can be measured by aiming the gun at the person serving. You can also use the unit by yourself by setting the unit on a tripod and measuring the speed from behind.

WORKING AND PLAYING

Aside from its extreme accuracy and advanced electronics, the unit is priced to meet the budget of every sports-minded athlete or parent. It's only $\$ 149.95$ complete.

You can measure the speed of baseballs, soccer balls, tennis balls, golf balls, hockey pucks, downhill skiers, radio controlled model airplanes or anything that moves-even automobiles.

The speed is flashed on the large LED display and is shown in miles per hour.

The unit accepts two commercially available 6 -volt lantern batteries which you can purchase locally or from JS\&A for only $\$ 2$ each. The batteries will last for weeks with normal use.

SUCCESS AND GOOD THINGS

The unit comes in a sports blue color and weighs 38.4 ounces, exclusive of batteries. It's rugged, well built and designed to endure the typical use and abuse it would normally receive.

We urge you to test this exciting new product during our 30 -day free trial. Order the Sports Radar gun. When you receive it, measure your child's pitching speed. Test it on your own tennis serve. See how knowing your speed will actually improve it as you try to out perform your previous record fast pitch or serve. Then decide if the Sports Radar gun doesn't make a very exciting addition to your sports equipment.

ONE FOR THE MONEY

If you are not convinced that the Sports Radar gun is something that you'll use constantly to help improve your game, return it for a prompt and courteous refund, including your $\$ 3.50$ postage and handling. You can't loseand chances are your son will at least have the most popular new product in the neighborhood.

To order one for your test, simply send your check for $\$ 149.95$ plus $\$ 3.50$ for postage and handling to JS\&A Group, Inc., at the address shown below. (Illinois residents please add 5% sales tax.) Credit card buyers may call our toll-free number below. If you wish to buy a set of two six-volt batteries, simply add $\$ 4.00$ to your order.

We'll then send your unit, the batteries (if you order them from us), a 90 -day limited warranty and complete easy-to-understand instructions.

Radar electronics for the sports enthusiast is now a reality. Watch your game improve by ordering your Sports Radar gun at no obligation, today.

Dept.RA One JS\&A Plaza Northbrook, III. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In Illinois Call (312) 564-7000

Sabtronics gives you DMM and Frequency Counter kits with more features，better performance and incredibly lower prices

Model 2010A Bench／Portable DMM：

 \＄69．95 kitFeatures： $31 / 2$ digit LED display $\bullet 31$ measurement ranges 6－Functions • 0．1\％Basic DCV accuracy • Touch－and－hold capability • Hi－Lo Ohms • 40 Hz to 40 kHz frequency response－Auto Zero，Auto Polarity • Overload protected－Overrange indi－ cation－Single chip LSI logic－Laser－trimmer re－ sistor network and ultra－stable band－gap reference for better long term accuracy \bullet Built－in NiCd bat－ tery charging circuit．
Brief Specifications：DC Volts $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges； AC Volts $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges； DC Current $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges； AC Cur rent $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges；Resistance 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges；Diode Test Current $0.1 \mu \mathrm{~A}$ to 1 mA in 3 ranges；Input impedance， $10 \mathrm{M} \Omega$ on AC and DC volts；Power requirement， 4.5 to 6.5 VDC（4＂C＂cells）or optional AC adapter／ charger．

Model 2015A Bench／Portable DMM：

 \＄89．95 kitSame features and specifications as Model 2010A except with large， $0.5^{\prime \prime}$ LCD $31 / 2$ digit display．

Optional Accessories：
\＃AC－115，AC adapter／charger $\$ 7.95$
\＃THP－20，Touch and Hold Probe \＄19．95
\＃NB－120 NiCd Battery Set $\$ 18.75$

Model 8610A Frequency Counter：

$\$ 89.95$ kit
Features：8－digit LED display $\cdot 10 \mathrm{~Hz}$ to 600 MHz guaranteed frequency range $(5 \mathrm{~Hz}$ to 750 MHz typical）• 3 Gate times • 10 MHz TCXO Time base－Auto decimal point \cdot Overflow indicator Leading zero blanking • Resolution to 0.1 Hz － Built－in charging circuit for NiCd batteries．
Brief Specifications：Freauency Range，switch selectable， $10 \mathrm{MHz}, 100 \mathrm{MHz}, 600 \mathrm{MHz}$ • Sensitiv－ ity，$\pm 10 \mathrm{mV}$ RMS to $100 \mathrm{MHz}, \pm 50 \mathrm{mV}$ RMS， 100 MHz to $450 \mathrm{MHz} ; 90 \mathrm{mV}$ RMS 450 MHz to $600 \mathrm{MHz} \cdot$ Impedance， $1 \mathrm{M} \Omega, 10 \mathrm{MHz}$ and 100 MHz ranges； $50 \Omega, 600 \mathrm{MHz}$ range－Gate time （switch selectable） $0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec} \cdot$ Temper－ ature stability， $0.1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \cdot$ Ageing rate $< \pm 5$ $\mathrm{ppm} / \mathrm{yr} \cdot$ Accuracy， 1 ppm or 0.0001%－Input protection， 150 V RMS to 10 kHz （declining with frequency）－Power Requirement， 4.5 to 6.5 V DC ＠ 300 mA （ 4 ＂C＂cells）or optional AC adapter／ charger（ 7.5 to 9V DC＠ 300 mA ）．

Ordering Information

USA－Add $\$ 5.00$ per kit for shipping \＆han－ dling．Personal checks have to clear before goods are shipped（allow 2.3 weeks）．For faster delivery send cahsiers check or money order． 10% deposit tor C．O．D．orders．Florida residents and sales tax． CANADA－Add $\$ 6.00$ per kit for shipping \＆ handling．No C．O．D．Payment in U．S．funds． OVERSEAS－Add $\$ 21.00$ per kit for airmail delivery．Payment by bank draft in U．S．funds．

Also available Model 8110A，same
as 8610 A except maximum
frequency is 100 MHz and without
battery charging circuit：$\$ 59.95$ kit

$\$ 89.95$

To place orders only，call toll free
800－237－5567
For other information call
（813）623－2631

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

Electronics publishers since 1908

Sabtronics NEW Hand-held Digital Multimeters . . .

The only thing that beats their performance is their price.

Accurate performance you can rely on, time after time. That's what you expect from a quality DMM. But don't expect to pay as much for it any more. Because now Sabtronics brings you top quality DMMs with more features and better accuracy than other comparable units on the market today. And they cost surprisingly less!

We cut the price.

Not the quality.
What you get is a precision crafted unit that features single-chip LSI logic, laser trimmed resistor network and a stable band-gap reference element for better long term accuracy. Basic DCV accuracy is 0.1%. The Model 2035A gives you 32 measurement ranges over 6 functions and the Model 2037A an additional two temperature ranges.

First in features.

First in price.
Both models feature touch-andhold capability with the optional probe - its so convenient, you'll wonder why the expensive models haven't got it yet! And twoterminal input for all measurement functions - this eliminates lead switching and makes your job easier. The Model 2037A even has a built-in temperature measuring circuit with a $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ range $\left(-58^{\circ} \mathrm{F}\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$ and is supplied complete with the sensor
probe. Of course, auto zero, auto polarity and overload protection are standard. And you get 200 hour operation from a single 9 V transistor battery. A low battery indicator warns you of the last 20% of battery life. The large, crisp LCD readouts allow easy viewing even in bright sunlight.
Assembling either kit is simple with our easy-tofollow, step-by-step instructions. And the built-in calibration references allow you to calibrate the unit any time, any place.
We've even eliminated difficult inter-connect wires. All parts mount on the PC board. The only wires you solder are the two battery-snap leads.

Biggest value in small DMMs

We are so sure that the Model 2035A and 2037A are the best values available that we offer a money-back guarantee. Examine either unit in your own home for 10 days, and if you are not convinced that it is the best value for your money, return it in its original condition for a prompt and courteous refund of the purchase price (less shipping and handling). Order yours today! Use the convenient order form or call

5709 N. 50th Street, M/S 35, Tampa, FL 33610

BRIEF SPECIFICATIONS:

DC VOLTS: $100 \mu \mathrm{~V}-1000 \mathrm{~V}, 5$ ranges AC VOLTS: $100 \mu \mathrm{~V}-1000 \mathrm{~V}, 5$ ranges DC CURRENT: $0.1 \mu \mathrm{~A}-2 \mathrm{~A}, 5$ ranges AC CURRENT: $0.1 \mu \mathrm{~A}-2 \mathrm{~A}, 5$ ranges Hi-OHMS: $0.1 \Omega-20 \mathrm{M} \Omega, 6$ ranges Lo-OHMS: $0.1 \Omega-20 \mathrm{M} \Omega, 6$ ranges TEMPERATURE: $-50^{\circ} \mathrm{C}-+150^{\circ} \mathrm{C}$ $\left(-58^{\circ} \mathrm{F}-+302^{\circ} \mathrm{F}\right), 2$ ranges (Model 2037A only).
SIZE: $3.5^{\prime \prime} \mathrm{W} . \times 6.6^{\prime \prime} \mathrm{L} . \times 1.6^{\prime \prime} \mathrm{H}$. WEIGHT: 11 oz . (excl. battery) OVERLOAD PROTECTION: 1000 V DC or ACpeak all voltage ranges; 250 V DC or ACpeak all Ohms ranges; 2A/250V fuse all current ranges.

Mail to: Sabtronics International, Inc., 5709 N. 50th St., M/S 35, Tampa, FI. 33610

 Please send me.

Videodiscs heat up: A traditional rivalry has been buried in the interest of videodisc standardization. CBS and RCA, traditional rivals in the battles over color-TV systems, phonograph record speeds, and bitter competitors in broadcasting and records, have finally gotten together on something. CBS has taken out a license to press discs for the RCA SelectaVision grooved capacitance disc system, which is scheduled to go into nationwide marketing early in 1981 (See Radio-Electronics, March 1980). CBS's pressing operation is scheduled to be on stream in 1982. In the meantime, RCA will custom-press videodiscs for CBS.

And from Japan: Mighty Matsushita Electric finally got moving on videodiscs, too, after more than a year of indecision. Matsushita scrapped its own mechanical Visc-O-Pac system to officially embrace the grooveless capacitance VHD (video high density) system developed by its subsidiary Japan Victor Corporation. Matsushita said both companies would produce players and seek to have VHD established as the Japanese and world standard. Although both VHD and SelectaVision operate by reading variations in capacitance, they are incompatible. Not only is one grooveless and the other grooved, they use different modulation systems and RCA's revolves at 450 rpm while JVC's spins at 900 rpm .

Following the Philips-MCA optical system, now on the market, and RCA's announcement, VHD becomes the third "standard" to be announced for the consumer market. All three companies are wooing other TV receiver and record manufacturers as licensees for their respective systems. In the U.S., Zenith-the largest TV manufacturer-is getting the most attention. There's a feeling that if it opts for the RCA system, the battle is over. If it chooses either of the others, the consumer market will be saddled with multistandards.

And another VCR: If you think that videodisc standards are muddled, how about those for videocassette recorders? In addition to fast-, medium- and slow-speed Beta and VHS formats, BASF is about to introduce its LVR (Linear Video Recorder), using 8 -mm tape. Toshiba says it will market its own LVR (Longitudinal Video Recorder) using $1 / 2$-inch endless-loop tape. Now along comes another-a neatlooking little seven-pound attache-case portable VCR that uses quarter-inch cassettes resembling audio cassettes. Playing time per cassette currently is 30 minutes, but is scheduled to be stepped up to a full hour. The unit is made in Japan by Funai Electric, and is expected to be imported into the U.S. by Technicolor as both a consumer and edu-cational-institutional product. Price in the U.S. is targeted at "under $\$ 1,000$," double the prospective price of Toshiba's LVR.

Andean color: Nearly 20 years of lobbying effort by the U.S. Commerce Department and the American television industry have finally paid off in South America, as the NTSC color system makes a clean sweep of the six Andean countries. Colombia was the last country in the group to opt for the American-developed system, following Venezuela's choice of the system. Just before Venezuela's commitment, Ecuador chose the American system. The other countries
are Bolivia, Chile, and Peru. Some of them won't be colorcasting for quite a while. But South America's two biggest countries are lost to NTSC. Brazil colorcasts in the Ger-man-developed PAL color on a 525 -line television system. Argentina, which has not officially chosen a color system, probably will add PAL to its 625 -line system, largely as a result of its extensive imports of German color equipment for last year's World Cup soccer matches. Argentina's neighbors Paraguay and Uruguay are still uncommitted.

Subscription TV: First it was pay cable. Now over-the-air subscription TV is beginning to make the kind of impact its proponents have forecast for 35 years. Although there are only six stations broadcasting the special no-commercial service, and they had a total of 400,000 subscribers at the start of this year (as compared with nearly $6,000,000$ paycable subscribers), rapid growth is seen, and manufacturers are hurrying to set up plants to build decoders. Some familiar names are getting into the act: Magnavox and Zenith are preparing to make the units, along with Canada's Electrohome, and CTS Knights, Oak, and BlonderTongue, the latter three already in production, as well as Consumer Technology. Up to a million decoders are expected to be installed this year, at $\$ 125$ and up. The simplest decoders merely unscramble the pay picture and are rented for a fixed monthly fee.

Dishes and captions: The old-line catalog and retail chain, Sears Roebuck, is gradually coming into the forefront of consumer-electronics technology. This month, Sears is scheduled to begin marketing captioning decoders for TV viewers with impaired hearing; they're manufactured by Sears affiliate Sanyo Manufacturing Co. ABC and NBC each is scheduled to offer five hours of programming with captions encoded in the vertical interval; PBS will provide 10 hours. Captioning will be handled by the new National Captioning Institute, which will get a royalty on each decoder and special TV decoding receiver sold. Decoders initially will be priced at $\$ 250$. The IC's for the decoders are being made by Texas Instruments. Sears, meanwhile, is holding talks with Comsat about possibly handling subscriptions and providing receiving installations for its proposed direct-to-home pay-TV system, which Comsat hopes to propose formally to the FCC this month.

Talking IC's: What's the hottest thing on the drawing boards in the semiconductor industry? Probably voicesynthesis and voice-recognition IC's. Everybody's working on special IC's to recognize and answer commands. One of the most interesting-and probably one of the first in the consumer field-is expected to be the talking automobile dashboard, considered a potential safety device. An imaginary conversation between driver and dashboard: "How's the gasoline?" "You've got about two gallons, enough to get 40 miles." "What about the oil pressure?" "It's OK." "Tune the radio to 96.2 and mute the commercials." "Yes, sir-and, by, the way, you're exceeding the speed limit by five miles per hour."

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

APRIL NEWS AROUND THE WORLD

FIBER SONICS

Warszaw-——Polish scientists, following research designed to produce an inexpensive equivalent to fiber optics for use in the audio ranges, have announced the discovery of fiber sonics. They have discovered that certain tubular materials, consisting of interiors transparent to sound and skins opaque to sound, can actually transfer sound from one end to another over lengths of several dozen meters through a series of internal reflections. Research group head Tomski Edisinski completed his successful first trial using a garden hose and two funnels, following over 800 unsuccessful trials using such lavish materials as sausage casings stuffed with cheese, prune-whip filled soda straws, and 10 -meter-long filter cigarettes.

FIBER PHONICS

Moscow---Russian scientists, claiming they had discovered "fiber sonics" years ago, but abandoned it due to a shortage of garden hose, today responded to the Polish announcement of fiber sonics with their own announcement of fiber phonics. Fiber phonics, instead of relying on the internal reflections of a carrier medium, takes advantage of the transmission capabilities of a suitably stressed elastic fiber. Initial tests involving two tin cans and a string were expanded to four tin cans and two strings for stereo; work on six tin cans and three strings has been delayed pending advances by Soviet medical technologists in grafting together the heads of one-and-a-half dogs.

NOPE SCOPE

Eugene--Oregon oscilloscope manufacturer Whobet-Packers today announced a major breakthrough in low-price oscilloscopes. Their surprising new no-trace oscilloscope offers response and bandwidth specifications reaching into the several Gigahertz region. Offering a 5 -inch undergraduated display with illuminated ridicule, this new scope is slated to sell in the "under- $\$ 100$ " area (just outside Enid, Oklahoma). Compared to single-trace, dual trace and multiple-trace scope, a company spokesman described this new no-trace scope as the ultimate in simplicity. "There's not a trace of confusion" sez he.

No Haven-- Solderless breadboard manufacturer Condimental Special Tease has again denied rumors of the development of solderless raisin, rye, and whole-wheat breadboards, while announcing plans to create an international breadboard shortage, resulting in a breadboard crisis, mandatory rationing, and wholesale price increases to an unaffordable level. Warned that price increases might dampen sales because of inflationary influences on available discretionary dollars, a company spokeswoman said "The peasants have no bread? Let them eat cake!" This announcement was quickly followed by the firing of the spokeswoman, abandonment of the planned price increases, new contracts for workers at the company's Bastille plant, and the announcement of a new line of inexpensive solderless cake boards.

PICO
 COMPUTERS

Austin-- Taxless Instruments has announced a new level of miniaturization resulting in an under-three-hundred-dollar home computer, complete with keyboard and voice synthesis capabilities, small enough to fit on the head of a pin. Company miniaturization director V. Pryss, wearing a cloth over his head, explained to newsmen that only two problems remain before the new computer can be introduced to the public. First, keyboard entry seems to be a problem with the tiny, quarter-pinhead size keyboard. Second, they can't remember which pinhead they left it on. Meanwhile, several newsmen in the garden reported hearing a small voice crying "Help me! Help me!"

Rainyvale - - The California District Federal Court has ruled on the level of integration in integrated circuits, found it inadequate, and will enforce mandatory bussing beginning immediately. The judge in the case denied taking payoffs from wealthy IEEE Bus Company executive Carmen Getitt, claiming they were campaign contributions only.

Parma--Ohio inventor Emma R. T. Sullivania has announced stereo for one ear. The new advance is said to require only one amplifier, one speaker, and is compatible with everything from current television audio to old 78-RPM records. Called Emma Naural after its inventor, the new advance is not expected to be commercially available in Parma until sometime in the next millenium.

Salerno-- Fashion-designer Coochy has attacked what he finds as a major disadvantage to the pocket calculator. "Putta the dumma thing inna yor pocketta anna you no see what she says," complains Coochy. The answer is in his new line of shirts with transparent calculator pockets, including cutouts for keyboard access. The fashion world has acknowledged this as another Coochy coup.

Is this any way to treat a $\$ 139$ multimeter?

In the rough world of industrial electronics, even a precision test instrument can get treated like dirt. You need all the ruggedness and dependability you can get in a DMM for field use.

You'll find these qualities and more in the Fluke line of low-cost DMM's. Our DMM's have been dropped from towers, stepped on, and run over by construction equipment. And they've survived because we never cut corners on quality, even on our lowest-priced, six-function Model 8022A Troubleshooter at $\$ 139$ U.S.

Take a close look at a low-cost DMM from Fluke and you'll notice tough, lightweight construction that stands up to the hard knocks of life.

Sturdy internal design and high-impact, flame-retardant shells make these units practically indestructible. Right off the shelf, they meet or exceed severe military shock/vibration tests.

Even our LCD's are protected by cast-tempered plastic shields. We use rugged CMOS LSI circuitry for integrity and endurance, and devote a large number of
components to protection against overloading, accidental inputs and operator errors.

We go to these lengths with all our low-cost DMM's to make sure they are genuine price/performance values. You can count on that. Because, that's what leadership is all about.

For more facts on DMM reliability and where to find it, call toll free 800-426-0361; use the coupon below; or contact your Fluke stocking distributor, sales office or representative.

8022A
Multimeter

IN THE US AND NON EUROPEAN COUNTRIES: John Fluke Mfg. Co., Inc. P.O. Box 43210 MS \#2B Mountlake Terrace, WA 98043 (206) 774-2481 Telex: 152662

IN EUROPE:
Fluke (Holland) B.V. P.O. Box 5053,5004 EB Tilburg, The Netheriands (013) 673973 Telex: 52237
\square Please send 8022A specifications. Please send all the facts on Fluke low-cost DMM's.
\square Please have a salesman call.
Name
Title Company

Address
City State Zip

Telephone (
For literature circle no. 23

Everybody's making money selling microcomputers. Somebody's going to make money servicing them.

New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that will handle things like payrolls, billing, inventory, and other jobs for businesses of every size...perform household functions including budgeting, environmental systems control, indexing recipes, and more. And thousands of hobbyists are already owners, experimenting and developing their own programs.

Growing Demand for Computer Technicians

This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. Department of Labor projects over a 100% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer.

Learn at Home in Your Spare Time
 NRI can train you

 for this exciting, rewarding field. Train you at home to service not only microcomputers, but their larger brothers, too. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends, without going to classes or quitting your present job.
Assemble Your Own Microcomputer

NRI training goes far beyond theory. It includes practical experience, too. As you progress, you perform meaningful experiments building and studying electronic circuits on the NRI Discovery Lab. ${ }^{(8)}$ You assemble test instruments that include a transistorized volt-ohm meter and a CMOS digital frequency counter... instruments you learn on, use later in your work.

And you build your own microcomputer: Each step of construction advances your knowledge, gives you deeper insights into this amazing world that's upon us.

This is the only microcomputer designed for learning. It looks, operates, and performs just like the finest of its kind...actually does more than many commercial units. But NRI engineers have designed components and planned the assembly procedure so it demonstrates important principles, gives you working experience in detecting and correcting problems.

Other Opportunities in Electronics

Since 1914, before commercial radio was even on the air, NRI has been the way to learn new electronics skills. Today's modern offerings include, in addition to three different computer courses, TV/Audio/Video Systems Servicing, with training on the only designed-for-learning $25^{\prime \prime}$ diagonal color TV, with state-of-the-art computer programming. Or, check out our Complete Communications Course, preparing you to enter this booming field servicing, installing, and repairing equipment like microwave, broadcast, CB, shortwave radio, paging, radar, and more.

Mail Postage-Paid Card for Free Catalog No Salesman Will Call

Send today for your free copy of our 100 -page, full-color catalog. It describes all of our electronics courses in detail, showing kits, equipment, and lesson plans. Look it over at your convenience, then decide how NRI can help you make the most of your talents. There's no obligation and no salesman will ever call or bother you. With more than a million students and unmatched experience in home training, NRI gives you the most in training for new opportunity! If card has been removed, write to:

NRI Schools
McGraw-Hill Continuing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

setsellite thy nows

International bird watching

A high percentage of the mail generated by the current series of articles on satellite TV in Radio-Electronics asks about receiving direct satellite-relayed reception from Europe, South America, and so on. It is possible. It is no more difficult than receiving the U.S. or Canadian domestic satellites, provided that you make a few minor adjustments to your equipment, and are ready to accept slightly inferior pictures.

One of the most interesting targets is the Russian Statsionar4 satellite positioned over the Atlantic at 14° west (longitude). Statsionar-4 has at least six operating transponders: $3,695 \mathrm{MHz}$, $3,745 \mathrm{MHz}, 3,795 \mathrm{MHz}, 3,845 \mathrm{MHz}, 3,895 \mathrm{MHz}$, and 3,945 MHz . The polarization is horizontal and audio is carried on a 7.5 MHz subcarrier. The apparent footprint-signal level is in the 19 dBw region on a global beam, which means that this satellite is receiveable throughout all of Europe and Africa and west to an imaginary line drawn north by south from Chicago to New Orleans. All of South America is included in that coverage.

RUSSIA'S STATSIONAR-4 SATELLITE located at 14° west can be received well even on an 8 -foot dish with a 150° Kelvin LNA as this photo shows. The edge of visibility (i.e., where the horizon cuts off for the satellite) in the U.S. is roughly along a line drawn from Chicago to New Orieans. Statsionar 8, to be located at 25 degrees west, will push the western edge of visibility to the eastern slope of the Rockies. If you go fishing for this one, remember the time-zone difference; Moscow signs off at around 10 PM their time most nights (although test patterns continue to be broadcast).

Within that coverage region a ten-foot dish, 150° Kelvin LNA and a tuneable receiver with a $11-13 \mathrm{~dB}$ noise figure should insure high-quality reception. It won't be in color however, because Russia employs the SECAM color system. That satellite is but one of approximately ten the Russians expect to have operational before this year is out, so that they can relay television worldwide by the start of 1981 using their own network of geostationary satellites.

Can American (or Canadian) DOMSAT's (domestic satellites) be received outside of North America? Yes, in some cases. Canadian ANIK satellites have sculptured antenna patterns favoring Canada; but reception south of the Mason-Dixon line without big antennas (20 feet in diameter or bigger) is poor. U.S. DOMSAT's have a bigger area to cover (Alaska to Puerto Rico, Maine to Hawaii) so there is more spillover than with ANIK birds. Bermuda, the central and western Caribbean, virtually all of Central America, and the shoreline regions of South America bordering on the Caribbean are all capable of receiving
U.S. DOMSAT's. But along with those coverage edges big antennas (20 to 30 feet in size) are required and with bigger antennas comes added expense.
The same people who refuse to grant private terminals permission to view their signals are quick to point out that, under international law, the U.S. (and Canadian) DOMSAT's are only licensed to serve their respective countries and that legally you are not supposed to set up a terminal in Caracas or Bogota in order to pirate U.S. satellite signals outside U.S. borders.

ROBERT B. COOPER, Jr.

Cable TV companies selling homesat

Scientific-Atlanta has shifted its marketing strategy for the Homesat subsidiary it created last year. Now cable-TV companies will be selling the small TVRO earth stations to individual families within certain geographical regions. Originally, Homesat sold directly out of Scientific-Atlanta's home office. The first major cable-TV firm to hook into the deal is Tele-Communications Inc., which will sell Homesat equipment in the western states area, where that company operates many cable-TV systems. Meanwhile the increasing number of competing firms that sell earth-station equipment to families (such as Gardiner Communications' StarScan, Avcomm, Channel One) continue to work out their own distribution means.

Satellite news notes

KRON-TV, an NBC-TV affiliate in San Francisco, is the first Bay Area TV station to set up its own Washington D.C. news bureau. The staff there beams news reports affecting Californians back home each evening via satellite, thus giving the newscast a Washington report with a local touch. WOR-TV New York Channel 9-with its hefty line-up of sporting events and movies-is now a round-the-clock superstation via Eastern Microwave which sends the signal around the country aboard RCA Satcom on Transponder 17.

C-SPAN (Cable-Satellite Public Affairs Network), which carries live coverage of debates from the House of Representatives, is adding other Capitol Hill and political features. CSPAN recently transmitted highlights of a Republican political caucus in Texas; and starting this year, there's an arrangement with Close-Up Foundation that will involve the presentation of high-schoolers interviewing Washington figures during the traditional school excursions to the Nation's Capitol. Those interviews will be beamed to schools around the country to be used as supplements in social studies, government, and civics classes.

Sony, which makes equipment for the Japanese direct-to-home-satellite experiment, is looking at the U.S. and could introduce components or entire systems when direct-broadcasting satellites arrive here. Currently the $12-\mathrm{GHz}$ experiment in Japan involves earth terminals costing about $\$ 350$ each.

Political commercials via satellite! It's a possibility for this fall's campaign if a plan by John Blair \& Co. materializes. Blair, a leading media company, has been experimenting with sending commercials directly to local TV stations via satellite links and hopes to have a system in place nationwide by this Autumn so that quickly up-dated commericals could be sent out. One obvious kind of commercials are the paid political announcements that are now usually air-freighted to TV stations; the satellite process could speed up their timeliness by a day or more.

GARY H. ARLEN

Turns On Lights Automatically

Low Cost Computerized Burglar Alarm System Home - Office - Business

The Guardex 8000 Alarm System is walnut grained and disguised to look like a small stereo speaker ($63 / 4^{\prime \prime} \times 93 / 4^{\prime \prime} \times 8^{\prime \prime}$) and weighs less than $61 / 2$ pounds.

NO INSTALLATION

Just plug the Guardex 8000 alarm system in, make several simple control adjustments to suit your particular building and it works! There are no other wires to run. This totally self-contained burglar alarm can completely seal off every square inch of the surface of your building. It protects doors, windows, and what most alarms miss...your roof, walls and floors.

HOW CAN ONE SMALL COMPUTER PROTECT MY WHOLE BUILDING?

Guardex 8000 Alarm System works on the principle of audio discrimination. This, put simply, is the process of electronically separating normal everyday sounds, such as voices, telephones, etc. from break-in type noises such as breaking glass, prying metal, or forcing a door open. The Guardex 8000 protects one story homes and offices up to 2000 square feet and open commercial buildings up to 10,000 square feet. The Guardex 9300 with wireless remote sensor capability is available for multi-story homes and offices or single story with more than 2000 square feet. Call the factory for more detailed information.

TURNS ON LIGHTS AUTOMATICALLY

When the first break-in type sound is detected, the system will instantly turn on lights, radio, or other electronic equipment that you have plugged into the back of the alarm. These lights or other equipment will remain on for a period of five minutes, then automatically turn off.

POWERFUL ELECTRONIC SIREN

The Guardex 8000 alarm is equipped with a loud built-in siren. If during the five minute period the lights or other electronic equipment has been activated, a second break-in sound is detected, (it can be only a second or two after the first break-in sound) the built-in siren will start blasting for 90 seconds. At the end of approximately 90 seconds the siren will shut off and the alarm listens again. If another break-in sound is heard, the siren will come on for another 90 seconds. If no other break-in sound is detected, the siren will stay off and at the end of the five minute period the lights will shut off and the alarm instantly resets.

The rear control panel contains two standard AC plug receptacles for a table lamp, spot lights, radio, etc.; terminals for connecting optional outside siren and back-up battery (not
included); entry delay time control and sensitity control.

EXIT AND ENTRY DELAY

The Guardex 8000 alarm has a built-in exit delay allowing you approximately one minute to lock up and leave the building before the alarm is armed. When you enter your building you may find that just your normal entering sounds activate the siren. You may delay it from starting for up to 30 seconds by turning up the siren entry delay control.

BATTERY BACK-UP

Burglars rarely cut power. However, to give you total protection from a burglar and possible power failure, our alarm has provisions for a battery back-up. (Batteries not included). 12 volt lantern batteries are available at most hardware stores.

THE BURGLARY PROBLEM

The F.B.I. statistics show that at the present rate, one out of every four Americans are going to be burglarized. That is not a very pleasant fact, but it is true. You have a greater chance of being burglarized than being a victim of a fire or automobile accident. The time is now to help protect yourself and your valuables with a Guardex 8000 alarm system.

OUTSIDE SIREN

The Guardex 8000 alarm is equipped with a loud, built-in siren, but if you desire an additional siren to mount outside or in an area away from the main alarm, they are available with 50 feet of wire for $\$ 24.95$. (Connecting terminals are provided on the back of the alarm).

30 DAY NO RISK TRIAL

This is your opportunity to purchase an alarm system directly from the factory for only $\$ 199.95$. Try it in your home or business for thirty days without risking one cent. Put our Guardex 8000 alarm to your own test. See for yourself! It will protect every window and door from break-in. If you are not completely satisfied, return the alarm within 30 days for a complete refund. To order your Guardex 8000 alarm, CALL TOLL FREE to charge your credit card or send your check to Guardian Electronics, Inc. in the amount of $\$ 199.95$. If you want the optional outside siren, add $\$ 24.94$. (California residents add 6% sales tax.)
(If you require more information, call during California business hours, Monday - Friday)
Dealer Inquiries Invited
CALL TOLL FREE
California residents:
(800) 423.5499
(213) 889-1414 collect.

B
 GUARDIAN ELECTRONICS, INC.

It was electronics time in Las Vegas. The 1980 Winter Consumer Electronics show had arrived and more than 65,000 retailers and distributors jammed the convention center to capacity, while previewing the products that will soon be available to us. Much of what was shown was conventional-those everyday products that are the staples of the consumer electronics industry. But here and there, the spotlight shone on the exceptional.
I'd like to take just a few moments of your time for a look at these exciting products.
A flat-screen TV prototype from Sinclair. It will not be available this year, but the unit demonstrated was a working model. It fortells a whole new world of television. I believe the prototype unit I saw may finally introduce those large-screen, hang-on-the-wall color sets that have been so consistently predicted over the years and have, to date, not appeared.
"The Source" is the name of a time-shared computer service. Connect your home computer to your phone via a modem and with a local phone call you can now dial up all kinds of advanced programs, daily news, and wire-service features that you can select with key words of your choice. It makes your terminal a part of a nationwide communications network that will permit you to talk or send mail to any other terminal for as little as $\$ 2.75$ per hour. It provides a buying service that lets you order merchandise, charge it to your credit card, and have it delivered to your door. It's an information service with endless possibilities. And there's much, much more; but that will be the subject of a complete article in a future issue.
Quasar presented a talking microwave oven. Again it's a prototype, but obviously represents the start of a whole wave of talking appliances, from wristwatches and calculators to you name it.
And then there are the TV's you talk to-actually command. "Tell" it to switch on and it will. Tell it to change channel and it will. And it's custom-tailored to your voice-no one else can operate the remote. Panasonic and Toshiba showed these.
How about a Sharp TV that lets you watch nine channels at the same time on a single 25 -inch color screen. Oh, you can snatch frames too. And Toshiba showed a four-channel-on-one-screen set too. Of course, it will probably be less expensive to buy multiple individual sets, but what a beautiful example of technology.

Satellite TV? Out in the parking lot, and not officially a part of the show, was a $\$ 7500$ earth station for satellite TV reception. In a truck with the antenna on the tailgate it was available for sale. The owner got his idea from the satellite-TV series currently running in Radio-Electronics.
Last, but not least, was Kenwood's FM stereo receiver. It has a CRT display that shows you every station on the air in your area; displays call signs and frequencies; measures signal strength, multipath distortion, and just about everything else you could possibly want. It is several years away from production, but if there had been one piece of equipment that I would have been allowed to cart out of the show, that FM tuner would have been my choice.
The next CES show is in Chicago in June and I just can't wait to get a look at that one.

Radio-
 Electronies ${ }^{\circ}$

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief Larry Steckler, CET, publisher
Arthur Kleiman, managing editor
Robert F. Scott, CET, W2PWG, technical editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
Herb Freidman, communications editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Ruby Yee, production manager
Robert A. W. Lowndes, production associate
Marie J. Stolfi, production assistant
Gabriele Margules, circulation director
Arline R. Fishman,
advertising coordinator

Cover design by Louis G. Rubsamen
Cover photo by Robert Lewis

Radio Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Secretary/Treasurer: Carol A. Gernsback
ADVERTISING SALES
Larry Steckler
Publisher
Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.,

8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

The most automatic DMM you can buy

- Automatically selects correct range for faster, more accurate measurements of voltage, current and resistance.
- Automatically places decimal point for correct readings.
- Automatically indicates polarity.

It's loaded with automatic features that save you time and make it so much easier to get accurate measurements.

The Heathkit IM-2212 Digital Multimeter automatically puts you in the correct range for the measurements you're making. And it gives you accuracy you can count on: $\pm 0.2 \%$ on DC and $\pm 0.4 \%$ on $A C$. That's precision.
The IM-2212 is super-fast, too. Response time on DC is less than 3 seconds, so you're not standing around waiting for α reading. You get a large, clear digital readout of your measurement with decimal point automatically placed at the correct digit.

Ranges include:
AC \& DC voltage from 200 mV to 1000 V . Resistance from 200 ohms to 20 megohm. AC \& DC current from $200 \mu \overline{\mathrm{~A}}$ to $2.000 \AA$.
A special hold switch lets you lock into the range you're using for added convenience.
The quality design of the IM-2212 includes complete input protection on all functions to prevent damaging overloads. An optional battery is even available for work in the field.

FREF CATALOG

Complete details and price on the Heathkit IM-2212 Digital Multimeter are in the new Heathkit Catalog, which describes more than $\mathbf{4 0 0}$ electronic kits for your home, work or pleasure. Send for your free Heathkit Catalog today or pick one up at your nearest Heathkit Electronic Center.

Heathkif

Heath Company, Dept. 020-644, Benton Harbor, MI 49022

Jetrers

AC OUTLET CHECKER

The AC outlet checker described by William D. Kraengel, Jr., in the August 1979 issue has a serious shortcoming which may lull its users into a false sense of security. All neon-lamp outlet testers of that type will indicate whether the neutral and grounding conductors are at the same potential, but none of them will measure the actual quali$t y$ of the ground.

It is imperative that the grounding (green or bare wire) conductor be able to carry the full fault current, which would be 15 or 20 amperes in a residential receptacle. To do that, the resistance to ground must be less than 8 ohms on a 15-ampere circuit, or 6 ohms on a 20 -ampere circuit. Mr. Kraengel's tester will indicate a satisfactory ground connection even if the ground resistance is up on the kilohm range.

I recommend that all users of the simple neon-lamp receptacle testers perform a simple added check: De-energize the circuit, and measure the resistance between the grounded (wider slot) terminal and the grounding(round hole) terminal on a receptacle that has passed the neon-lamp test.

That resistance should be less than 10 ohms. It would be a good idea to measure the resistance between the grounding terminal on the receptacle and a known good ground, such as a water pipe or a ground rod; that resistance should be a few ohms at most.

One last word about ground quality: Some ground clamps that are sold in handyman and department stores are of inferior quality, being made of aluminum with a copper or brass plating. Don't use them! The safest, most durable grounding system uses copper ground rods (or a buried copper water-pipe network) with copper ground clamps and copper wire. I have discovered many faulty grounding systems where the clamp used to connect the load center's ground wire to the ground rod was made of aluminum, and had been eaten away completely by galvanic corrosion.
ERIC LEMMON
Lompoc, CA

VIDEODISC SYSTEMS

I have been reading your articles on the two major videodisc systems, as well as
updates and letters from other readers. I myself have managed to order a Magnavision optical system machine through the aid of a friend.
My concern is that a potentially beneficial invention, such as this, may be totally lost in the shuffle, or be greatly delayed in production, because of the useless haggling over different and entirely incompatible systems.

Many articles have stated: "Let the public decide." I would certainly agree with that. The problem is that the various companies are stacking the decks so that the public's decision will not be based upon the merits of a particular system but on the software available. Magnavision/MCA has Paramount, Universal, and Warner Brothers films, for example, while RCA has MGM and 20th Century Fox. Isn't that familiar or have we forgotten about the quad situation when Columbia and RCA were incompatible? Everyone lost, including the con-sumer-perhaps especially the consumer!

Perhaps we could learn a better lesson from the videocassette "war" now going continued on page 22

NEW 1980 DIGITAL MULTIMETERS FROM FLபKE

8050A
$41 / 2$-digit multimeter
microprocessor technology

- dB: That's right, direct readings in dBm, referenced to any of 16 impedances that you select enced to any of 16 impedances that you select
from the 8050 A 's scrolling reference memory.
- REL. This stands for relative reference in the dB mode or offiset measurements in other functions.
- Conductance function - resistance to $10,000 \mathrm{MO}$
- AC measurements to 50 kHz and higher
- True RMS for ac accuracy
- Touch-Hold probe for tricky places (Y8008)
- Diode test and low power ohms
- Built-in batteries and charger (Option -01)

If you don't see your kind of electronic pliers here.

 look agai
Xcelite makes them all.

Xcelite, long acknowledged as the world's first family of electronic hand tools, now includes a greatly expanded line of solid joint pliers and cutters. All the pliers you'll ever need, and more. Because new designs are continually added as new electronic products are born.

The present range extends through 38 patterns and sizes including 13 new models for miniature electronics. Made in U.S.A. by the latest technology and quality controls, in one of the world's most modern electronic hand tools plants, Xcelite pliers set the standards for the industry. Yet the same advanced production techniques make them competitively priced.
Typical of the features that single out Xcelite quality are coil spring openers, polished heads, cleanly milled and perfectly aligned jaws, hand-honed and mated cutting edges, exceptional strength and performance provided by forged alloy steel construction, precision machining and scientific proportioning. Handles are designed for maximum leverage and convenience, with plastic coated "Cushion-Grip" for added comfort.
Styles? What else could you possibly need: standard, midget, and taper nose diagonals; standard, very fine and extra thin needle nose; long and short nose; long, short and midget chain nose, with and without side cutters; side cutting; short flat nose; round nose; tip cutter wiring; cutting and looping; short nose tip cutting; thin bent nose; midget semi and full flush cutting; diagonal full flush cutting; and stainless diagonal cutting.
You don't know what you can do with pliers until you know what Xcelite pliers can do for you. See your distributor and let him update you.

Learning electronics is no picnic.

 At any level it takes work and a few sacrifices. But with CIE, it's worth it.

Whoever said, "The best things in life are free,' was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics at home by spending just 12 hard-working hours a week, two hours a day. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don't have to go to a classroom. The classroom comes to you.

Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to apply the wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.

Which CIE training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, FCC License and career.

Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

CIE specializes exclusively in

 electronics.Why CIE? CIE is the largest independent home study school that specializes exclusively in electronics. Nothing else. CIE has the electronics course that's right for you.

Learning electronics is a lot more than memorizing a laundry list of
facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It's built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

Programmed learning.

That's exactly what happens with CIE's Auto-Programmed ${ }^{\oplus}$ Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to
answer your question in terms you can understand.

CIE prepares you for your FCC
 License.

For some jobs in electronics, you must have a Federal Communications Commission (FCC) License. For others, some employers tend to consider your license a mark in your favor. Either way, your license is government-certified proof of your knowledge and skills. It sets you apart from the crowd.

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 graduates who take the exam get their licenses! You can be among the winners.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some other ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114 Accredited Member National Home Study Council

YES. . . I want to learn from the specialists in electronics-CIE. Send me my FREE CIE school catalog plus my FREE package of home study information. RE-85
Print Name
Address Apt.
City
State__ Zip
Age Phone (area code)
Check box for G.I. Bill bulletin on Educational Benefits: \square Veteran
Active Duty
MAIL TODAY!

LETTERS

continued from page 16
on. True-there are different systems, but when software is made available it's produced in both formats: Beta and VHS. That way, the buyer can select a recorder for its recording abilities rather than being penalized because of which pre-recorded material he wants.
Along those lines, I see no reason why the two videodisc systems can't exist side by side. Those who want only movies, and a less expensive machine, can buy an RCA system. Those who want (or need) the extra features that Magnavision/Philips provides (such as freeze frame, lectures, art gallery tours, etc.) can buy that format, and would be willing to pay extra for the extra features. But the movies and other entertainment items should be available for both systems. A buyer could then truly decide upon which system he needs. As things stack up now, I would have to buy one player to see Jaws and a different one to see Star Wars.
Should this become a software war, rather than a hardware one, the public has shown, in the way it has ignored quad, that it will throw up its hands and bypass the whole thing. And that would be a shame.
WILLIAM RADFORD-BENNETT
Washington, D.C.

TEXTRONIC TEST EQUIPMENT

Off and on in your magazine, I have noticed requests for technical data for Textronic and related test equipment. I have located the Air Force technical order numbers for some of the more common oscilloscopes and preamps on the surplus market, and have listed them below. To obtain those, individuals should write to the Government Printing Office, Washington, D.C. for information on price and availability.

Oscilloscopes:

Tex. RM35...T.O. No. 33A1-13-76
Tex. RM35A.. T.O. No. 33A1-13-177
Tex. 535......T.O. No. 33A1-1-76
Tex. 535A T.O. No. 33A1-13-241
Tex. 545...... T.O. No. 33A1-13-73
Tex. 545A..... T.O. No. 33A1-13-247
Tex. 585..... T.O. No. 33A1-13-173
Hickock 1805,
1805A............. No. 33A1-13-66

Preamps:

Tex. type B ... T.O. No. 33A1-13-115 Tex. type CA......... No. 33A1-13-116 Tex. type K... T.O. No. 33A1-13-113 Tex. type 53/54A.. No. 33A1-13-114 Tex. type 53/54B.. No. 33A1-13-115 Tex. type 53/54C.. No. 33A1-13-409 Tex. type 53/54CA No. 33A1-13-116 Tex. type 53/54G . No. 33A1-13-118 Tex. type 53/54K.. No. 33A1-13-113 CHARLES BROWN

EINSTEINIAN IMPOSSIBILITIES

Having made a list of extensive impossibilities in Einstein's special theory of relativity, I notice that Dr. Howard Mark's letter (October 1979 issue) mentioned an Einsteinian notion that is one of my evidences: relativity of simultaneity.

Mark states: ". . . events simultaneous to one observer cannot be simultaneous to (a moving) observer." By "events" he means, for instance, flash-emissions of
light at two spots (A^{\prime} and B^{\prime}) in the moving reference system and equidistant from the "moving" and "rest" observers (M^{\prime} and M respectively).

Resulting flash-beams are received simultaneously by M but non-simultaneously by M^{\prime} because M^{\prime} moves closer to one (from B^{\prime}) and farther from the other (from A^{\prime}). Einstein could not explain how the beams could be received nonsimultaneously by M^{\prime} in his reference system (say a train) because that would mean the beams had unequal or variable velocities coming from each direction along the train. So he assumed that the emissions occurred "nonsimultaneously" in the train. Purporting that one flash (at A^{\prime}) occurred later than the other (at B^{\prime}) he could insist that the beams had equal or constant velocities.

Inspect Einstein's logic closely: As M and M^{\prime} coincide, M judges that the flash at A^{\prime} occurs (with the flash at B^{\prime}). It did not yet occur according to M^{\prime} but occurs later, after M^{\prime} moves farther to the right of M. Meanwhile, according to M, the beam has already passed A^{\prime}, having traveled along the train to some spot to the right of A^{\prime}; observers in the same train with M^{\prime}, stationed between A^{\prime} and that spot cannot have helped notice! Einstein's logic proves to be a physically impossible self-contradiction. Relativity of simultaneity is physically impossible.
ANTHONY HANS KLOTZ
Long Island, NY

OUTBOARD CONVERTERS

Can you tell me something about the availability of "outboard converters" as mentioned in the review of the Electra BC220 scanner on page 35 of the September 1979 Radio Electronics? Any information about the purchase or construction of such converters would be greatly appreciated. Also, any information about improving reception on the Aircraft Band (118-136 MHz) would also be very helpful.

Your magazine is the finest in its field. Keep up the good work!
J. P. MAGUIRE

Wappingers Falls, NY
Converters are available both as kits and factory-wired units from several domestic manufacturers:

Hamtronics, Inc., 65 Moul Rd., Hilton, NY 14468;

Vanguard Electronic Labs, 196-23 Jamaica Ave., Hollis, NY 11423;

VHF Engineering, 320 Water St., Binghamton, NY 13901;

Hermes Research and Development Co., 3997 Elkcam Blvd SE., St. Petersburg, FL 33705;

Janel Laboratories, 33890 Eastgate Circle, Corvallis, OR 97330;

Advanced Receiver Research, Box 1212, Burlington, CT 06013.

We have been advised by the Electra Company (Cumberland, IN 46229) that the BC-220 aircraft performance has been improved since our evaluation sample was tested. They assure us that customers should find no trouble receiving stations in the 118-136 MHz frequency range. In any case, sensitivity on weak signal reception may be improved with the addition of a preamplifier available from virtually all of the converter manufacturers above. - Robert B. Grove

DMMs from Keithley. Call your nearest distributor.

ALABAMA

Huntsville
PIONEER 205/837-9300
ARIZONA
Phoenix
METERMASTER 602/243-4111
Tempe
JENSEN TOOLS, INC. 602/968-6231
CALIFORNIA
CALIFORNIA
Los Angeles
Los Angeles
METERMASTER 213/685-4340
Palo Alto
METERMASTER 415/968-0313
San Diego
METERMASTER 714/560-4841
CONNEGTICUT
Middletown
EIL/MANCIB DIVISION 203/346-6646
FLORIDA
FLORIDA
Orlando
PIONEER 305/859-3600
Palm Bay
EIL INSTRUMENTS, INC. 305/725-8300
ILIINOIS
Chicago
METERMASTER 312/593-8650
PIONEER 312/437-9680
INDIANA
Indianapolis
PIONEER 317/849-7300
MAINE
Buriington
EIL/MANCIB DIVISION 617/272-9450
MARYLAND
Baltimore
PIONEER 301/792-7500
Gaithersburg
PIONEER 301/948-0710
Timonium
BIL INSTRUMENTS, INC. 301/252-1260
MICHIGAN
Ann Arbor
PIONEER 313/455-9090
Livonia
PIONEER 313/525-1800
MINNESOTA
Minnetonka
PIONEER 612/935-5444
NEW JERSEY
NEW JERS
Fairfield
AMPOWER 201/227-7720
NEW YORK
Great Neck
INSTRUMENT MART 516/487-7430
Long Island
EIL INSTRUMENTS, INC. 516/231-6333
New York
ADVANCE 212/687-2224
Rochester
Rochester
AMPOWER 716/377-1020
NORTH CAROLINA
Greensboro
PIONEER 916/273-4441
OHIO
Cleveland
PIONEER 216/587-3600
Dayton
PIONEER 513/898-7166
OREGON
Portland
WESTCON, INC. 503/283-0132
PENNSYLVANIA
Philadelphia
PIONEER 215/674-4000
EIL INSTRUMENTS INC. 215/357-7733
Pittsburgh
PIONEER 412/782-2300
TEXAS
Dallas
PIONEER 214/386-7300
Garland
METERMASTER 214/271-5671
Houston
METERMASTER 713/988-5555
QUALITY INSTRUMENT LABS, INC.
713/524-0528
VIRGINIA
Alexandria
EIL INSTRUMENTS, INC. 703/354-4330
Virginia Beach
EIL INSTRUMENTS, INC. 804/449-3746 U.S.A.

ADVANCE ELECTRONICS 800/223-0474
(except New York)
AMPOWER 800/526-2514
(except New Jersey)

Our 130 DMM gives With all the hand-held DMMs around these days, it can be tough to pick the

 have a lot of high-priced frills that you may not want. Our Model 130 Digital Multimeter makes that choice a lot easier accuracy, a 10A because it was designed with your needs in mind.
Accurate. The 130 is five times more accurate than many comparably priced analog VOMs, and it also compares

 display, easier you want. Thatis senge emm acurary - only one alibsaion adjustment is required, once a year. controls, and lighter Rugged. We built the 130 to be tough enough to take it in real-world situations. The case is $2.5 \mathrm{~mm}\left(.100^{\prime \prime}\right)$ thick and made of high TV10 ${ }^{\text {thent }}$ strength, impact resistant plastic. The LCD window is tough, scratch-resistant polycarbonate. The handsome faceplate is designed for maximum legibility and ease of use-all ranges and functions are color-coded and clearly marked.
And all components are on a single PC board that's mounted to the faceplate, permitting the vital electronics to "float" free of the backing and protecting them from jolts. Yet the whole unit weighs a mere 283 g (10 oz .) -one of the lightest units around.
Easy to use. Our $15 \mathrm{~mm}\left(0.6^{\prime \prime}\right)$ LCD display is 60% larger than that of many other pocket DMMs. Both range and function are easily selected with one hand-no complicated pushbuttons. And a rear panel mounting screw lets you use the 130 while it's mounted to a stand or special holder, even without taking it out of its optional carrying case.

And that's no fluke.

Keithley quality. Like all Keithley products, precision components and user-oriented design are built right in to the 130. Full overload protection, a 10A current range, auto zero and auto polarity round out the list of standard features. And a full line of accessories expands its capabilities to $40 \mathrm{kV}, 200 \mathrm{~A}$ and 700 MHz . But the real measure of Keithley value is how we give you all this performance at a sensible price.

Keithley Instruments, Inc. 28775 Aurora Road Cleveland, Ohio 44139
(216) 248-0400

equipment reporis

Beckman Instruments Models Tech 300 and 310 Digital Multimeters

CIRCLE 101 ON FREE INFORMATION CARD
BECKMAN INSTRUMENTS, INC. (2500 HARBOR Blvd, Fullerton CA 92634) has been making test instruments and precision components of many kinds for a long time. They're now making a complete line of digital multimeters. One pair of almost twin meters are designed and priced especially for electronic technicians and hobbyists in all fields. These are the models Tech-300 and Tech-310. A 10-ampere current range and a built-in continuity function are provided on the 310 , but otherwise they're almost identical. The readout is a highly legible 3.5 digit liquid crystal display.

The Tech- 300 has a total of 27 ranges for seven functions, while the Tech-310 has 27 ranges, plus an additional 10 -ampere current range. The functions and ranges are selected using the function/range switch. (You can't say "controls" because there is only one.)

Each function and range is very plainly marked, and the knob is recessed to avoid accidental damage. So are the special banana jacks along the bottom. Those are of the protected type, so that no bare metal is exposed when the test-leads are plugged in. The test leads, by the way, are very rugged-looking and the probes have protective collars on the end to keep fingers out of things.

Both meters measure DC volts on 5 ranges from 200 mV up to 1500 V with an accuracy of 0.25% for the Tech-310 and 0.5\% for the Tech-300. AC volts are measured on the same ranges except for the top one which is 1,000 volts RMS. The accuracy of the AC voltage measurements is 0.75% for the Tech- 310 and 1.5% for the Tech-300. Alternating and direct current are measured in 5 ranges (6 ranges on the Tech-310) from 200 microamps to 2 amps with the Tech-300 and 10 amps with the Tech310. There are 5 resistance ranges, from 200 ohms to 20 megohms. All are low-power ohms with a maximum in-range voltage of 250 mV .

For diode/transistor testing, a special range is used, marked with a diode symbol. That applies up to 2.0 volts across the junction. If the junction is reverse-biased, ol appears on the display indicating circuit condition. Re-
verse the test leads and if the junction is good, you'll read the actual voltage drop across the junction on the 2 -volt scale with a resolution of 0.1 mV . The current flowing is limited to 5 mA by a constant-current source. That protects transistors from damage. Junctions may be tested in-circuit with as little as 200 ohms shunt resistance.

A special continuity test that Beckman calls Insta-Ohms is used in the Tech-310 on all ohms ranges. Continuity tests have been difficult on conventional DMM's. With this new feature, if you touch the test leads to a circuit and the resistance is anything less than twice the range chosen, an ohms (omega) symbol will appear instantly in the upper left corner of the display. It tells you that the circuit does have continuity. A fraction of a second later ($1 / 4$ second to be exact) the circuit resistance will appear. (If you're on the 200 -ohm scale, you'll see the reading if there's anything below 400 ohms.) If it's more than range, ol appears and you switch to a higher range. The OL is also overrange readout for all other ranges and functions.

Another feature that should also be popular is the battery life. The meters use only a single 9 -volt rectangular battery and an average life of 1600 hours or 2 years is claimed for a common zinc-carbon battery (with an alkaline battery, up to 2,000 hours). The low battery indication is a blinking decimal point. When that appears, there is approximately 200 hours of battery life left.

Practically all of the circuitry is contained on a custom-CMOS LSI IC. The CMOS technology accounts for the long battery life. By using the LSI IC, the total count of electronic parts is reduced to less than 40 . Each instrument is given a 100 -hour burn-in test and complete calibration tests. A one-year warranty is given, which includes calibration.

The high accuracy of those two meters is obtained by the use of special thin-film ICtype voltage divider networks. They are used on all functions. All of the inputs are protected against overload including the resistance ranges, which can withstand up to 300 VDC or RMS AC. The current inputs are protected against overload by a 2 -ampere fuse, except for the 10 -ampere range on the Tech-310. That input will withstand up to 20 amps for 30 sec onds (which should give you plenty of time to "get out of there!")
Accessory probes are available for reading up to 50 kV DC, 200 MHz AC currents up to 1000 amps , with a current-clamp-type probe. Also available are a set of deluxe test leads and two carrying cases. The meter case itself is a tough plastic that is claimed to withstand a drop of 6 feet to a hard surface. It has a retractable bail that is used for a bench-rest, or can be flipped around to make a carrying handle.
The price is quite reasonable for instruments of this quality: $\$ 110.00$ for the Tech-300 and $\$ 140.00$ for the Tech-310. The Beckman company has a wide reputation for making quality instruments and precision components and
their technology has been put to good use in designing and building these two meters.

We checked our meters out on TV sets and assorted semiconductors, and found them very easy to use and to read in dark places with no problems. Quite a pair of instruments! R-E

JVC HR-6700U Video Cassette Recorder

CIRCLE 102 ON FREE INFORMATION CARD
THE FIRST BLOW TO THE MOTION PICTURE INdustry was the widespread profileration of home television: Box-office receipts plummeted. Then Hollywood discovered that, rather than a threat, TV was a logical medium to exploit with the made-for-television movies. Now, a new threat appears to have emerged: the home video recorder.
The home video machines are available in two hotly-contested formats: Beta and VHS. At the present time, there seems to be an indication that VHS is winning. We decided to have a look at one of the better VHS machines, the 6700 U video cassette recorder from JVC. In addition, JVC offers a matching Vidstar color camera that can turn the video cassette recorder into an instant home movie camera. . . . but more about that later.
The $H R-6700 U$ VCR weighs in at 31 pounds, and is a videophile's delight! Handsome in appearance and flexible in performance, the recorder touts a variety of features, many controlled by six microprocessor memories.
Selectable tape speeds provide up to six hours of recording from a standard two-hour T-120 video cassette. Slow motion at $1 / 1 s^{\text {to }} 1 / 3$ normal speed shows no degradation or noise on the signal; and even still playback is available for "freeze-frame" fans!

The secret behind the quality of slow-speed video recording is the recording-head complement. Most competitive recorders use the same heads for recording a variety of speeds. Because of that tradeoff, non-standard speeds suffer distortion. The HR-6700U features six separate recording heads, providing a much higher density of information. Both picture and sound are enhanced using that technique at both slow and normal speeds.

Crosstalk distortion is also minimized by an advanced H -aligned format that allows noiseless double-speed playback in the normal (twocontinued on page 32

It's easy to see why LEADER oscilloscopes are now specified more than ever. More performance and quality for less cost ... with immediate deliveries from over 100 stocking distributors. They also come with the best two-year warranty in the industry ... backed by efficient factory service depots on the East and West Coasts.

A full-range of reliable, medium bandwidth

 oscilloscopes. LEADER's oscilloscope line includes 11 models, single and dual trace versions, for bench or field use. All models offer comprehensive triggering controls, TTL compatible Z-axis modulation, front panel trace alignment control and convenient, color-keyed front panel layout. Probes are furnished with every oscilloscope and options include probe pouches, carrying cases, front panel covers and rack mounting adapters.
30 MHz delayed sweep \$1,530.

LBO-515B is a compact, precision oscilloscope at a moderate price. Using a PDA 4-inch CRT with parallax-free internal graticule, it features 5 mV sensitivity and delayed sweep for viewing and measuring complex waveforms. Also has 120 ns signal delay, trigger hold-off and $x-y$ operation at full sensitivity.

30 MHz with signal delay - $\$ 1,100$.

LBO-520 combines a 11.7 ns rise time with 5 mV sensitivity and 120 ns signal

20 MHz battery/ac portable - $\$ 950$.

 LBO-308S provides lab performance and high reliability in field service applications. Sensitivity is 2 mV with a complete set of triggering controls and 18 sweep ranges to $0.1 \mu \mathrm{~s} / \mathrm{div}$. with X5 magnifier. Compact, lightweight with 3 -inch rectangular, internal graticule CRT. (Optional 2 hour internal battery pack is recharged during ac operation, $\$ 75.00$.)
Two-year warranty. Evaluation units.

delay lines. Has single shot triggering, X10 sweep magnifier and bright, sharp PDA CRT. Triggers to 50 MHz .

20 MHz dual and single trace $-\$ 835$., $\$ 610$. LBO-508A and

 LBO-507A give you versatility at low cost. Rise time is 17.5 ns with $1 \mathrm{M} \Omega(35 \mathrm{pFd})$ input impedance. Automatic or external triggering, X5 sweep magnifier, $10 \mathrm{mV} / \mathrm{cm}$ sensitivity and add/ subtract modes.

Oscilloscopes, frequency counters function generators, video and audio instruments ... a LEADER instrument for almost every need.

A history of high reliability permits LEADER to provide a generous 2-year warranty ... backed by factory service depots on the East and West Coasts. A free, trial use of LEADER instruments
is available to all qualified companies. Call toll-free

(800) 645-5104 to

 request:- an evaluation unit
- our 40-page catalog
- the name of your nearest "Select" distributor - additional information

10 MHz with 1 mV sensitivity - $\$ 645$.

 LBO-514 has both vertical and horizontal X5 magnifiers. Sensitivity is from $1 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$. Sweep speeds from $0.2 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$. Auto or normal triggering. Z-axis modulation. (Single trace version, LBO-513, \$495.)
When Quality Counts

 Instruments Corporation
 380 Oser Avenue
 Hauppauge, N.Y. 11787 (516) 231-6900
 Regional Offices:
 Chicago, Los Angeles, Dallas.

CIRCLE 43 TO BE CONTACTED

MINIMUM ORDE S 25.00 , SHIPPIMG CHARCE S 2.00 , RY. CITY AND STITE RESIDENTS LDD TAX
OK MACHINE \& TOOL CORPORATION
3455 Conner St: Bronx NY 10475 ■(212) 999.6600 - Telex 125091

	PRB-I DICITAL LOCIC PROBE						
	PROTOTYPE BORRD [m-100			H-PCB-1]	HOBBY BOARD	\$4.99	
	TERMINALS: 1,020 TEST POINTS. 188 separate 5 point terminals, plus 2 horizontal bus lines of 40 common test points each. SIZE: $61 / 2^{*}$ Wide, 5^{5} Long. CM-100 MODULAR PROTOTYPE BOARD $\$ 25.95$			TERMIIALL BORRD .062 thick glass coated epoxy laminate. Outside dimensions 6.3 in . $\times 3.94 \mathrm{in}$. Not plated.			
$288 \div \text { ano }$	PROTOTVPE BORRD Cm-200 TERMINALS: 630 TEST POINTS. 94 separate 5 point erminals, plus 4 bus lines of 40 common test points each. SIZE: $6^{\prime \prime}$ Wide, $31 / 2^{*}$ Long. CM-200 MODULAR PROTOTYPE BOARD $\$ 16.45$			PC BORRD Same specifications as A-PC-01 except matrix pat- tern is copper plated and solder coated on one side.			
CM-400	PROTOTVPE BORRD Cm-300, tm -400 CM-300 and CM-400 have two separated rows of five interconnected contacts each. Each pin of a DIP inper pin to insert connecting wires. They accept leads nections are readily made with RW- 50 Jumper Wire. All contact sockets are on a .100 in . square grid $\left(1 K_{1}\right.$ in. wide).			PC BORRD Same specifications as A-PC-01. Each line of holes is connected with copper plated and solder coated parallel strips on one side. A-PC-03 PRINTED CIRCUIT BOARD $\$ 5.95$			
風				Pt BOARD Same specifications as A-PC-01. One side has horizontal copper strips, solder coated. Second side has vertical parallel bars.			
;	CM-300 MODULAR PROTOTYPE BOARD 59.95 CM.400 MODULAR PROTOTYPE BOARD $\$ 2.45$						
	modutar bus strip CM-500 is a bus strip to be used in conjunction with $\mathrm{CM}-300$ and $\mathrm{CM}-400$ for distribution of power and terminals, grouped into clusters of five. All contact sockets are on a 100 in . square grid.			PC BORRD The A-PC-05 features numbered contacts for easy hole locations. Made of .062 in . thick epoxy lami-nate. $4.5 \mathrm{in} . \mathrm{x} 5 \mathrm{in}$. Edge Connector Board.			
CM-300 CM-500	CM-500 MODULARBUSSTRIP $\$ 1.95$			Same as A-PC-05 except outside dimensions are 4.5 in. $x 6.5$ in. Edge Connector Board.			
$\sqrt{\sqrt{\sqrt{\sqrt{7}}}}$	JUMPER WIRES 50 Preformed wires, from $11 / 2$ to 4 inches, 20 AWG solid wire, white insulation.			Same as A-PC-05 except outside dimensions are 4.5 in. $\times 7$ in. Edge Connector Board.			
				TERMIMAL5			
				WWT-1 SLOTTED TERMINAL S4.98			
				wwt-	SINGLE SIDED	\$2.98	
				WWT-3	IC SOCKET TERMINAL	54.98	
	mini shenr			WT	TERMINAL		
	MS-10	MINI-SHEAR	54.95	terminal inserting tool For inserting WWT-1, $-2,-3$ and -4 terminals.			
	mini shenr with safety tuip						
					For inserting WWT-1, $-2,-3$ and -4 terminals.	\$2.49	
	Ms-20	MIIN-SHEAR WITH CLIP	\$5.95	R.C. B. TERMIMEL STRIP5			
	Uacuum UISE ABS construction, $11 / 2$ in. wide jaws.				$\begin{aligned} & \text { 4.POLE } \\ & \hline \text { 8-POLE } \\ & \hline 12-\mathrm{POLE} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{51.39}{} \\ \hline \frac{51.19}{\$ 2.99} \\ \hline \end{array}$	
				MODULAR TERMIMAL STRIPS			
	WIRE WRAPPING RITS Wh-2, WK-3, Wh-4			TS.6MO	${ }^{(3)}$ per Package)		
				PC CRRD GUIDES			
				TR-1	CARD GUIDES	\$1.89	
				OUANTITY - ONE PNAR(2 PCS)			
				Pt CRRD GUIDES \& BRACHET5			
	WIRE WRAPPING RIT WK-5 BW-630, WSU-30M, CON-1, EX-1, INS-1416, TRS-2, MS-20, $14,16,24$ and 40 DIP sockets, WWT-1, WD-30-TR1, H-PCB-1.				ounntity - one set (a PCS)		
				pt ence connector 44 pin , dual read-out, . 156 in . spacing, wire-wrapping.			

ELECTRONICS DESIGNERS' HAND-

BOOK. Edited by L. J. Giacoletto. 2nd Ed 2,344 pp., 1,686 illus. Now doubled in size and with 90% of its material new, this famous classic (first edition by Landee, Davis, Albrecht) has been thoroughly revised and updated to give you not only the how and the why of all your design work but also the how much of every design step you take!
231/494 Pub. Pr., \$56.50 Club Pr., \$41.50
STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 11/e. By D. G. Fink and H. W. Beaty. 448 pp., 1, 414 illus. A giant in every sense of the word, today's most widely used source of electrical engineering information and data serves you as no other single work available anywhere when you need de tailed, accurate, timely, and reliable facts and how-to on the generation, transmission, distribution, control, conversion, and application of electric power. 209/74X Pub. Pr., \$49.50 Club Pr., \$38.00

BE SURE TO COMSIDER THESE IMPORTANT TITLES AS WELL:

LOGIC DESIGNERS' MANUAL. By J. D. Lenk 784/671 Pub. Pr., \$18.95 Club Pr., \$15.75

CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION. By M. E. Frerking. 784/973 Pub. Pr., $\$ 16.95$ Club Pr., $\$ 13.50$

MINICOMPUTER SYSTEMS, 2/o. By R. H. Eckhouse, Jr.
$787 / 026$

Pub. Pr., \$21.95 Club Pr., \$17.75
UNDERSTANDING OSCILLOSCOPES AND DISPLAY WAVEFORMS. By K. W. Sessions \& W. A. Fischer.
787/786 Pub. Pr., $\$ 17.95 \quad$ Club Pr., $\$ 14.50$
THE SEMICONDUCTOR MEMORY BOOK. By Intel Marketing Communications
788/391 Pub. Pr., \$14.95 Club Pr., \$12.70

MICROPROCESSOR APPLICATIONS MANUAL. By Motorola Semiconductor Products, Inc. 435/278 Pub. Pr., \$38.00 Club Pr., $\$ 26.50$

NATIONAL ELECTRICAL CODE HANDBOOK, 16/e. By J. F. McPartland 456/909 Pub. Pr., \$19.95 Club Pr., $\$ 14.50$

SOURCEBOOK OF PROGRAMMABLE CALCULATORS. By Texas Instruments, Inc. 637/466 Pub. Pr., \$16.50 Club Pr., \$12.50
OSCILLOSCOPES. By R. Van Erk. 670/501 Pub. Pr, \$19.50

Club Pr., \$14.50
NOISE REDUCTION TECHNIQUES IN ELECTRONIC SYSTEMS. By H. Ott. 769/63X Pub. Pr., \$21.25 Club Pr., \$15.50

THE DESIGN AND DRAFTING OF PRINTED CIRCUITS. By D. Lindsey. 196 pp., 100 illus. For everything you need to know and understand about design phases that PC artworks go through, from schematics to the finished PC, your best all-around guide is this fully illustrated new teaching tool
054/304 Pub. Pr., \$26.95 Club Pr., \$21.00
ELECTRONICS DICTIONARY. Edited by J Markus, 4th Ed., 768 pp., 1,173 illus., 17,090 terms. With the new edition of this worldrenowned dictionary you'll be able to quickly find the meaning and correct usage of any electronics term, no matter how obscure! $404 / 313 \quad$ Pub. Pr., $\$ 24.50 \quad$ Club Pr., $\$ 19.50$

HANDBOOK OF OPERATIONAL

AMPLIFIER CIRCUIT DESIGN. By D. F Stout. Edited by M. Kaufman. 434 pp., 223 illus. Compact, concise, highly concentrated, and containing a storehouse of information this one-stop volume will help you solve any op amp circuit problem!
617/97X Pub. Pr., \$29.65 Club Pr., \$17.50
ELECTRONIC DISPLAYS. By E. G. Bylander, Texas instruments incorporated, 172 pp., illus. The book describes current electronic displays by family types, discussing all aspects of their operation, application, and circuit requirements. You cover photometry and contrast enhancement, together with the fundamentals of such critical components as mounts and drives, interface requirements, and other necessary engineering information. 095/108 Pub. Pr., $\$ 19.50 \quad$ Club Pr., $\$ 15.95$

DIGITAL FILTERS. By A. Antoniou, 524 pp. illus. This all-inclusive, up-to-date treatment guarantees your thorough understanding of today's digital filters and the theories, techniques, and procedures you'll be using in their analysis, design, and implementation. The book gives you many design examples, together with the numerous possible approaches and engineering tradeoffs relating to their hardware implementation.
021/171 Pub. Pr., \$23.95 Club Pr., \$18.50
BUCHSBAUM'S COMPLETE HANDBOOK OF PRACTICAL ELECTRONIC REFERENCE DATA. By W. H. Buchsbaum, 2nd Ed., 645 pp., 371 illus., 70 tables: It gives you all the technical electronic information you need-from the factual foundations of electronics to the latest technical advances in optoelectronics, large scale integrated circuits, digital logic, microprocessors, and computers. Hundreds of formulas, graphs, charts, and tables.
786/550 Pub. Pr., \$19.95 Club Pr., \$16.95
RADIO HANDBOOK. By W. I. Orr, 21st Ed., 1,135 pp., 1,364 illus. Now completely updated, expanded, and more deserving than ever this profusely illustrated reference gives you everything you need to know to understand, design, use, and experiment with every circuit and piece of equipment. (All recent technological breakthroughs are covered).
772/630 Pub. Pr., \$21.50 Club Pr., \$16.60
TRANSFORMER AND INDUCTOR DESIGN HANDBOOK. By W. T. Mclyman, 428 pp., illus. User-oriented throughout, it covers everything from transformer design and inductor design with dc, power inductor design, designing for regulation, inductor design without dc, constant voltage transformer, current and three-phase transformer, to application of magnetic components in power electronics.
786/755 Pub. Pr., \$35.00 Club Pr., \$26.50

fffer to new members of the and Control Engineers' Book Club

HANDBOOK OF ELECTRONICS CALCULATIONS FOR ENGINEERS AND TECHNICIANS. Edited by M. Kaufman and A. H. Seidman. 653 pp., 725 illus. This first comprehensive tool of its kind includes hundreds of worked-out problems in analog and digital circuits. Includes more than 700 diagrams, curves, tables, and graphs.
333/920 Pub. Pr., \$24.50 Club Pr., \$18.95
MICROCOMPUTER-BASED DESIGN By J. B. Peatman. Expanded 4th printing, 604 pp., over 400 photos and other illustrations Do all your best day-to-day designs, as well as your supercreative and special designs, around the new microcomputers and the specific "how-to" help you get here!
$491 / 380 \quad$ Pub. Pr., \$26.95 Club Pr., \$18.95

MICROELECTRONICS

Digital and Analog Circuits and
Systems By J. Millman. 881 pp., 700 illus. This giant book takes you step by step from a qualitative knowledge of a semi-conductor, to an understanding of the operation of devices, and finally, to an appreciation of how these are combined to form micro-electronic chips.
combined to form micro-electronic chips.
$423 / 27 X \quad$ Pub. Pr., $\$ 24.50 \quad$ Club Pr., $\$ 19.50$
MINIMICROCOMPUTER HARDWARE
DESIGN. By G. D. Kraft and W. N. Toy. 514 pp., 250 photos, diagrams, figures. The swing is more to designing and using small-scale computers as computing components, this is your guide to doing just that! With what you already know, plus the skills you'll gain here, you'll be way ahead as the whole field of computing moves towards distributed processing element systems!
788/26X Pub. Pr., \$19.95 Club Pr., \$16.95
DIGITAL INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER AND OPTOELECTRONIC CIRCUIT DESIGN.
Edited by B. Norris. 206 pp., 400 illus. Having this vast amount of case-tested data, proven shortcuts, worked-out circuit designs, and circuit diagrams handy saves you valuable time for your other, more vital, areas of creative de-sign-and cuts down costs in all areas!
637/539 Pub. Pr., \$21.50 Club Pr., \$15.95

INTRODUCTION TO RADAR SYSTEMS,
2/e. By M. I. Skolnik. 698 pp., 244 illus. This new edition of a widely used text on radar from the systems engineer's point of view brings you full discussions of the many major changes that have occurred in the field recently.
579/091 Pub. Pr., \$34.95 Club Pr., \$27.95
ENGINEERING MATHEMATICS HANDBOOK Definitions, Theorems, Formulas, Tables. By J. J. Tuma. 2nd Ed., 394 pp., 226 illus. Now you can use even the most difficult formulas on your pocket calculator for input and/or storage! Literally thousands of formulas were remodeled to facilitate their application to today's pocket calculator operations.
654/298 Pub. Pr., \$21.95 Club Pr., \$17.50

ELECTRONICS ENGINEER'S HAND-

BOOK. Editor-in-Chief, D. G. Fink. 2, 104 pp
2,026 illus. Huge in every sense, this instantreference volume gives you every latest essential in the field, 2,100 formulas and equations, a 2,500-item bibliography, and every illustration you need to clarify all of modern electronics!
209/804 Pub. Pr., $\$ 52.50$ Club Pr., $\$ 37.50$
PRINTED CIRCUITS HANDBOOK, 2/e. By C. F. Coombs, Jr. 256 pp., 327 illus. Blueprints every important phase of printed circuitry. Provides the information you need to establish a production facility and control the processes. A virtual encyclopedia in the field, five major sections cover engineering, fabrication, assembly, soldering, and testing.
126/089 Pub. Pr., \$32.50 Club Pr., $\$ 24.50$
ENGINEERING FUNDAMENTALS FOR PROFESSIONAL ENGINEERS' EXAMINATIONS, Second Edition. By L. M. Polentz, $416 p p$. 326 illus. Here-in this single volume-you'll find all the latest, most essential material you need to prepare for and pass your state's engineering registration exam. Hundreds of examples and practice problems are all drawn from actual P.E. exams, and were selected because they are representative of the problems that will appear on your exam. 503/80X Pub. Pr., \$23.50 Club Pr., \$16.95

Why YOU should join now!

- BEST BOOKS IN YOUR FIELD - Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the latest books in your field.
- BIG SAVINGS - Build your library and save money too! We guarantee savings of at least 15% off publishers' list prices on every book. Usually $20 \%, 25 \%$ or even higher!
- BONUS BOOKS - You will immediately begin to participate in our Bonus Book Plan that allows you savings between $70-80 \%$ off the publisher's price of many books.
- CONVENIENCE - 14 times a year you receive the Club Bulletin FREE, fully describing the Main Selection and alternate selections, together with a dated reply card. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection -or no book at all -you simply indicate it on the regular reply card and return it by the date specified. You will have at least 10 days to decide. If, because of late mail delivery of the Bulletin you should receive a book you do not want, just return it at the Club's expense.
As a member, you agree only to the purchase of four books (including your first selection) over a two-year period.

Special $\$ 1.89$ premium book comes to you with your first club selection

Electronics and Control Engineers Book Club
P.O. Box 582 , Hightstown, New Jersey 08520

Please enroll me as a member and send me the two books indicated, billing me for my first selection only at the discounted member's price, plus local tax, postage and handling. If not satisfied, Imay return the books within 10 days and my membership will be canceled. 1 agree to purchase a minimum of 3 additional books during the next 2 years as outlined under the club plan described in this ad. Membership in the club is continuous but cancelable by me at any time after the four book purchase requirement has been fulfilled.

Orders from outside the U.S. must be prepaid with international money orders in U.S. dollars.

Signature
Name
Address
City
State \qquad
This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. A postage and handling charge is added to all shipments.

E33421

This is easyanyone can solderWITH KESTER SOLDER

SOLDER

Handymen! Hobbyists! DO-IT-YOURSELFERS!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing - a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. - Save money - repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.
When you Solder go "First Class" - use Kester Solder.
For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

KESTER SOLDER
4201 WRIGHTWOOD AVENUE/CHICAGO, ILLINOIS 60639
CIRCLE 36 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

continued from page 24
hour) mode as well as triple-speed playback in the six-hour mode.

Picture stability has always been a problem in video recording; as speed fluctuates, so does the synchronization signal. The new JVC recorder incorporates a microcomputer-controlled timer that works in conjunction with a fast-response capstan servomechanism to lock on to those synchronizing signals; that prevents the annoying flopover so frequently associated with home recorders.

For recording off the air, a built-in VHF/ UHF solid-state tuner is operated manually or by microprocessor memories. Unattended, the machine will record six programs on different channels up to a week in advance; or at the same time every day-or at different times on different days! Now that's flexibility!

A dual-mode auto-search counter allows the user to program the recorder to stop at " 0000 " in rewind, or to stop where the recording began-whether in fast forward or rewind.

A remote-control accessory allows the operator to shift speeds from the comfort of his viewing position. But to use the convenience of the many automatic features, he may allow the machine to do his speed thinking for him. The $H R-6700 U$ senses the speed format of the tape that has been loaded and automatically switches to the correct speed.

When the owner desires to watch TV, he merely switches off his recorder; the antenna will be automatically connected to the television receiver. The tuner portion of the recorder is a presettable 12 -channel VHF/UHF tuner with channel-lock provision. Input impedance is nominally 75 ohms on VHF, and 200 ohms on UHF.

Video signal-to-noise ratio is better than 45 dB , and horizontal resolution is at least 240 lines; the audio-frequency response is 50 $10,000 \mathrm{~Hz}$.

The optional matching color camera is compact and lightweight, slightly over three pounds, depending upon zoom lens.

The original engineering philosophy was to provide a camera that is as small and lightweight as a standard 8 mm home movie cam-era-and as easy to operate. A tall order, but JVC seems to have done it! In our test, the video camera came through with flying colors. Focus was sharp; persistence was fast (very little smear from rapid movement), and the camera was not fatiguing to hold and operate.

The operation of the camera couldn't have been simpler: Point and shoot! Zoom and focus are no more awkward than on a quality photographic camera. For the home-movie addict who wants to move up into the electronic age, this is the way to go.

The camera is built around a 0.66 -inch vidicon with either a $3 \times$ or $6 \times$ zoom lens available. It features automatic iris control and through-the-lens viewfinder. Color correction (temperature or white balance) is accomplished electronically without the need of optical filters. Exposure indicators in the viewfinder alert the user whenever there are improper lighting conditions.

A built-in high-sensitivity condenser microphone features a wind screen. While a ten-foot cable is provided, extensions up to 60 feet from the recorder are allowable.

A pistol-trigger switch activates the camera and recorder. A tripod and spotlight accessory may be purchased separately if desired, to be used with the camera.

The specifications for the camera show it to be a $3.6-\mathrm{MHz}$ single-carrier frequency multiplex system with 525 lines, 2:1 interlaced. Color temperatures are switch selectable among 3000,4800 , or $6000^{\circ} \mathrm{K}$. Video output is 1 volt P-P with 250 line resolution.
We found the new JVC video cassette system with matching camera an impressive performer. It is full-featured, innovatively-engineered, and realistically-priced.
The suggested retail list price for the GX$66 U$ Color Video Camera is $\$ 850$ and the $H R$ 6700 U Vidstar Color Video Cassette Recorder is $\$ 1350$. For more information, write to: JVC, 58-75 Queens Midtown Expressway, Maspeth, NY 11378.

R-E

Hitachi Model V-302 DualTrace Scope

CIRCLE 103 ON FREE INFORMATION CARD
JUST A FEW YEARS AGO A $10-\mathrm{MHz}$ OSCILLOSCOPE would have sufficed for all but the most critical applications. Today's sophisticated technology is rapidly making the $10-\mathrm{MHz}$ scope as obsolete as the older $5-\mathrm{MHz}$ units. Even the wellequipped TV service bench of today is required to have a scope capable of at least 30 MHz , especially if that service center is expecting to become a VCR service agency for most of the popular brands of units on the market.

With the above facts in mind, Hitachi Denshi, Ltd., Tokyo, Japan, has introduced a unit that seems to fill the requirements of the TV service industry and at the same time is perfectly at home in the other fields of industry such as the computer field.

The Hitachi model V - 302 dual-trace scope is very neat-appearing and professional-looking with a brushed-metal rim surrounding the entire front panel. The panel itself is composed of three colors, and the colors are arranged to indicate to the user the location of all controls that are related to each other. For instance, the silver area contains the power switch, INTENSITY control, FOCUS control, and the LED pilot light.

The inputs and controls that are related to the horizontal (X) and vertical (Y) display functions will be found in the gray-colored sections. The third color is brown and it contains the trigger MODE and SOURCE switches, trigger Level, and external trig input. That multicolored panel adds a quality look to the overall appearance as well as serving a very useful purpose for the operator. When shipped, the panel has a protective plastic film covering its entire surface. The protective shield may be removed or allowed to remain to prevent the front panel from becoming soiled from fingerprints, etc.

The unit supplied came equipped with two test probes, each containing a convenient builtin thumb hook that adds to the ease of handling the probe, especially when hooking onto a circuit point. The probe itself is of a convenient size for the state-of-the-art units the
present-day technician is required to troubleshoot. The "clip-on" hook portion may be removed and a miniature-sized needle-tipped test probe is available for point-to-point testing. The normal probes (as supplied) are $\times 10$ low-capacitance types.

The gray-shaded portion of the panel contains the horizontal-display controls. The TIME/DIV rotary switch dominates that section with 19 positions that select sweep speeds ranging from $0.2 \mu \mathrm{~s}$-per-division to 0.2 sec -onds-per-division in a $1-2-5$ sequence. When this switch is placed in the fully clockwise position, the scope is set to operate in the X-Y mode. In that case, the input signal to Channel 1 is displayed on the X axis and Channel 2 signals are presented on the Y axis. To the right of the TIME/DIV switch is the variable sweep control for the timebase settings that are not covered by the preset times on the main switch. When the control is adjusted to the extreme clockwise position, the unit is in the calibrated mode. The horizontal-positioning (centering) control is also in this section. In addition, if the control is pulled outward, the scope is set for a $\times 10$ magnification of the horizontal trace.

The vertical sensitivity is selectable in ten steps over the range of 5 mV -per-division to 5 volts-per-division. These ranges are also continuously variable when the vertical gain control is turned from the calibrated position. In addition, by pulling the vertical position knob to the outward position, the gain of the vertical (Y) amplifier is multipled by a factor of 5 . Of course, being a dual-trace unit, there are duplicate controls for the second channel. The vertical input has an impedance of 1 megohm continued on page 34

Find out in the latest Heathkit Catalog. It's filled with exciting kits in every price range, all easy to assemble, all at build-it-yourself savings.
Discover the fun you and your family can have building your own home computer, stereo system, color TV. Discover the
 pride of saying, "I built it myself." It's easier than you think.
Send today for your FREE Heathkit Catalog.

Heathkif
 If coupon is missing, write

 Heath Co., Dept. 020-642, Benton Harbor, MI 49022[Send For FREE Catalog Today!
Send to: Heath Co. Dept. 020-642, Benton Harbor, MI 49022
Send my free Heathkit Catalog now. I am not currently receiving your catalog.

Name
Address

City State

CL-724B
Zip
CIRCLE 7 ON FREE INFORMATION CARD
shunted by 30 pF . A switch selects AC or DC input, as well as acting as a grounding switch for the input circuitry.

Other features are located in the brownshaded area at the upper right hand corner and the extreme bottom center. The latter is the MODE switch that determines which input signals will be displayed. Aside from the normal Channel-1 or Channel-2 signals being displayed alone or simultaneously, the switch will also algebraically add or subtract the input signals. That feature is particularly useful when comparing phase and voltage relationships of the two input signals, among many other important tests.

The center right-hand portion of the front panel is related to the triggering of the timebase. In that section will be found the Level control; the MODE switch, which selects wheth-
er the scope will be triggered automatically, in the normal manner, or if it is to be used with composite signals such as a TV signal. In fact, like most better scopes today, the MODE switch has positions for $\operatorname{TV}(+)$ and $\operatorname{TV}(-)$ signals. There is also a SOURCE switch that obtains the trigger pulse from the Channel-1 or Channel-2 inputs, the 60 Hz line, or the external TRIG INPUT jack. The latter is a BNC type.

For calibration purposes there is a 0.5 V P-P squarewave signal available on the front panel. It is located at the upper right-hand side of the unit. The amplitude is accurate to within 3% and the frequency is $1 \mathrm{kHz} \pm 10 \%$.

Another control that is often not found on many scopes is a TRACE ROTATION control. It is useful in eliminating the effects of external magnetic fields and could be called a tilt control as that is the effect of misadjustment.

Your breadboarding is a super-snap with a solderless A P Super-Strip.

Build a circuit almost as fast as you dream it up. Pull it apart and do anothereverything's as good as new. Our versatile Super-Strip mini-breadboards give you the same top-quality contacts you get in our fullscale ACE All-Circuit Evaluators. Not so "mini," either. You can build circuits with

as many as nine 14-pin DIPs. Instant-mount backing and quick-removal screws make stacking and racking a snap, too.

Where to buy? Phone (tollfree) 800-321-9668 for the name of your local A P distributor. And ask for our complete A P catalog, The Faster and Easier Book.

AP PRODUCTS
INCDRPDRATED
1359 W. Jackson St.
Painesville, Ohio 44077
Tel. 216/354-2101
TWX: 810-425-2250

ROADRUNNER ADMM

Audio Digital Multimeter FROM M ヨ TVOM
are you confused by all those hand-held digital multi-meters on the market? compare PRICE AGAINST FUNCTIONAL FLEXIBILITY AND YOU WILL BE CONVINCED THAT THE WESTON MODEL 6100
 ROADRUNNER IS YOUR BEST BUY!

CHECK THESE FEATURES

- 29 Ranges
-. $\operatorname{lm} V$ to 1000 VDC
- ImV to 750VAC
- . 001 to 2000 mADC
-. 001 to 2000 mAAC
- lohm to 20 Mohms
- 300VAC protection in ohms and audio
- Automatic polarity
- 200 hours battery life
- 10\% "lo-batt" indication
- $3^{1 / 2}$ digit LCD $.5^{\prime \prime}$ display
- Rugged case. Built-in stand.
- $1,10,100 \mathrm{mV}$ and $1,2 \mathrm{~V}$ threshold pulse detect*
- $1,10,100$ Ohm threshold continuity testing*
- Diode tests*
- Transistor tests*
- Capacitor tests *
- Stuffed PCB tests*
- RFI shielded
- X5 analeg VOM accuracy
- Self Calibration
- Overrange indication
* denotes audio response ${ }^{\text {TM }}$ function FULL LINE OF ACCESSORIES

AC Clamp-on Probe . . . $\$ 57.75$ Battery Eliminator. 15.00 Light Meter attachment . . 262.00 Temperature Probe (avail. soon)

Carrying case RF Probe. VHF RF Probe. HV Probe.

Start Computing For Just \$129.95 With An 8085-Based Professional Computer Kit-

Explorer/85

100% compatible with all 8080A and 8085 software \& development tools!

No matter what your future computing plans may be, Level " A "-at $\$ 129.95$-is your starting point.
Starting at just \$129.95 for a Level "A" operating system, you can now build the exact computer you want. Explorer/85 can be your beginner's system, OEM controller, or IBMformatted $8^{\prime \prime}$ disk small business system. . yet you're never forced to spend a penny for a component or feature you don't Now, for just $\$ 129.95$ you can small, affordable sleps. Now, for just $\$ 129.95$, you can own the first level of a fully puter which features the advanced Intel 8085 cpu , computer which features the advanced Intel 8085 cpu , thereby tools that exist for both the 8085 and its S0804 predecessor they are 100% software compatible)-a computer which features onboard S-100 bus expansion-plus instant conversion to mass storage disk memory with either $5-1 / 4^{\prime \prime}$ diskettes or standard IBM-formatted $8^{\prime \prime}$ disks.
For just $\$ 129.95$ (plus the cost of a power supply, keyboard/ erminal and RF modulator, if you don't have them already), Explorer $/ 85$ lets you begin computing on a significant level. applying the principles discussed in leading computer magazines. . developing "state of the art" computer solutions for both the industrial and leisure environment.

Level "A" Specifications

Explorer/85's Level "A" system features the advanced Intel 8085 cpu , an 8355 ROM with 2 k deluxe monitor/operating with room for RAM/ROM/PROM/EPROM and S-100 expansion, plus generous prototyping space.
(Level " A " makes a perfect OEM controller for industrial applications and is available in a special Hex Version which

Level " A " at 5129.95 is a complete operating system, perfect for beginners, hobbiests, or industrial controller use. put, . cassette tape recorder output. speaker output output...speaker output... LED output indicator on SOD (serial output) line. ...printer interface (less drivers)...total of
four 8-bit plus one 6-bit 1/O ports ${ }^{\circ}$ Crystal Frequency: 6.144 MHz - Control Switches: reset and user (RST 7.5) interrupt. ..additional provisions for RST 5.5, 6.5 and TRAP interrupts onboard - Counter/Timer: programmable 14-bit interrupts onboard binary - System RAM: 256 bytes located at F890, ideal for binary - System RAM: 256 bytes located at F800, ideal for
smaller systems and for use as an isolated stack area in smaller systems and for use as an isolated stack area in
expanded systems...RAM expandable to 64 k via S -100 bus or 4 K on motherboard.
System Monitor (Terminal Version): $2 k$ bytes of deluxe system monitor ROM located at F098 leaving 0998 free for user RAM/ROM. Features include tape load with labeling . . . tape dump with labeling. ..examine/change contents of memory ...insert data... warm start...examine and change all registers. . . single step with register display at each break point, a debugging/training feature... go to execution address.. move blocks of memory from one location to another. . fill blocks of memory with a constant. . . display blocks of memory .automatic baud rate selection...variable display line length control (1-255 characters/line)...channelized 1/O monitor routine with 8 -bit parallel output for high speed printer serial console in and console out channel so that monitor can
communicate with 1/O ports. System Monitor (Hex Versi
System Monitor (Hex Version): Tape load with labeling. tape dump with labeling ...examine/change contents of mem-
ory...insert data...warm start...examine and change all

registers... single step with register display at each break point go to execution address. Level "A" in the Hex Version be programmed using the Netronics Hex Keypad/Display.

Level "B" Specifications

Level "B" provides the S-100 signals plus buffers/drivers to support up to six S-100 bus boards and includes: address decoding for onboard 4 k RAM expansion select-able in 4 k blocks. address decoding for onboard 8 k EPROM expansion selectable in 8 k blocks. . address and data bus drivers for onboard expansion... wait state generator (jumper selectable), o allow the use of slower memories...two separate 5 volt regulators.

Explorer/85 with Level Explorer/85
"C"card cage. cards are neatly contained inside
Explorer's deluxe steel cabinet. plated S-100 extes a sheet metal superstructure, a 5 -card gold board. Just add required number of S-100 connectors

Level "D" Specifications

Level "D" provides 4 k or RAM, power supply regulation, filtering decoupling components and sockets to expand your Explorer $/ 85$ memory to 4 k (plus the original 256 bytes located in the 8155A). The static RAM can be located anywhere from 9098 to EFFF in 4 k blocks.

Level "E" Specifications

Level "E" adds sockets for 8 k of EPROM to use the popular Intel 2716 or the TI 2516. It includes all sockets, power supply ecgulator, heat sink, filtering and decoupling components. Sockets may also be used for soon to be available RAM IC's (allowing for up to 12 k of onboard RAM).

Order A Coordinated

Explorer/85 Applications Pak!

Experimenter's Pak (SAVE \$12.50)-Buy Level "A" and Hex Keypad/Display for $\$ 199.90$ and get FREE Intel 8085 user's manual plus FREE postage \& handling!
Student Pak (SA VE \$24.45)-Buy Level "A," ASCII Keyboard/Computer Terminal, and Power Supply for $\$ 319.85$ and get FREE RF Modulator plus FREE Intel 8085 user's manual plus FREE postage \& handling
Engineering Pak (SAVE S41.00)-Buy Levels "A," "B," Co," "D," and "E" with Power-Supply, ASCII Keyboard Computer Terminal, and six S-100 Bus Connectors for $\$ 514.75$ and get 10 FREE computer grade cassette tapes plus FREE 8085 user's manual plus FREE postage \& handling!
Business Pak (SAVE S89.95)-Buy Explorer/85 Levels "A," "B," and "C" (with cabinet), Power Supply, ASCII KeyVideo Monitor Terminal (with cabinet), 16k RAM, 12" Video Monitor, North Star 5-1/4" Disk Drive (includes North Star BASIC) with power supply and cabinet, all for just plus FREE 8085 user's manual plus FREE postage \& handling!

CALL TOLL FREE 800-243-7428

To Order From Connecticut Or For Technical
Assistance, Etc. Call (203) 354-9375

333 Litchfield Road, New Milford, CT 06776 Please send the items checked below-

Please send the items checked belowVersion), $\$ 129.95$ plus $\$ 3$ p\&h.
\square Explorer/85 Level "A" Version), $\$ 129.95$ plus $\$ 3$ p\&h.
8 k Microsoft BASIC on cassette
tape, $\$ 64.95$ postpaid. tape, $\$ 64.95$ postpaid
(requires Levels "BASIC in ROM Kit (requires Levels "B,'
$\mathbf{\$ 9 9 . 9 5}$ plus $\$ 2$ p\&h.
\square Level "B" (S-100) Kit, S49.95 plus \$2 p\&h.
S2 Level "C", (S-100 6-card expander) $\mathbf{K i t}, \$ 39.95$ plus $\$ 2$ p\&h.
\square Level "D" (4k RAM) Kit, $\$ 69.95$ plus $\$ 2$ p\&h.

- Level "E" (EPROM/ROM) Kit, $\$ 5.95$ plus 500^{p} p\&h
\square Deluxe Steel Cabinet for Explorer/ $85, \$ 49.95$ plus $\$ 3$ p\&h.
\square ASCII Keyboard/Computer Terminal Kit (features a full 128 character set, upper \& lower case, full cursor control, 75 ohm video output convertible to baudot output, selectable baud rate, RS232-C or 20 ma . I/O, 32 or 64 character by 16 line formats, and can be
used with either a CRT monitor or a TV used with either a CRT monitor or a TV set (if you have an RF modulator), S149.95 plus 52.50 phh
Hex Keypad $/$ Display \square Hex Keypad/Display Kit, \$69.95
\square Deluxe Steel Cabinet for ASCII Keyboard/Terminal, $\$ 19.95$ plus $\$ 2.50$ p\&h.
\square Power Supply Kit ($\pm 8 \mathrm{~V}$ @ 5 amps) in deluxe steel cabinet, $\mathbf{\$ 3 9 . 9 5}$ plus $\mathbf{\$ 2}$ p\&h.

S4.85 each, post S-100
 S. 85 each, postpaid.

\square RF Modulator Kit (allows you to
use your TV set as a monitor), $\mathbf{\$ 8 . 9 5}$ postpaid.
\square 16k RAM Kit (S-100 Board expands to 64 k), $\$ 199.95$ plus $\$ 2$ p\&h.
32k RAM Kit, $\$ 329.95$ plus $\$ 2$ pech.
48K RAM Kit, $\$ 459.95$ plus $\$ 2$ p\&h.
$\square 64 \mathrm{k}$ RAM Kit, $\$ 589.95$ plus $\$ 2$ p\&h.
\square 16k RAM Expansion Kit (to expand
any of the above up to 64 k), $\$ 139.95$
plus $\$ 2$ p\&h each.
\square Intel 8085 cpu User's Manual, $\$ 7.50$ postpaid.
\square Special Computer Grade Cassette Tapes, $\$ 1.90$ each or 3 for $\$ 5$, postpaid. - 12" Video Monitor (10 MHz , width), $\$ 139.95$ plus $\$ 5$ p\&h. - North Star

North Star Double Density Floppy 85 (includes 3 drive S-100 controller 85 (inctudes 3 drive S-100 controller,
DOS, and extended BASIC with per-
sonalized disk operating system-just
plug it in and you're up and running!), plug it in and you're
$\mathbf{\$ 6 9 9 . 9 5}$ plus $\$ 5$ p\&h.

Power Supply Ki

DPower Supply Kit for Nor
Disk Drive, $\$ 39.95$ plus $\$ 2$ p\&h.
Disk Drive, $\$ 39.95$ plus $\$ 2$ p\&h. Deluxe Case for North
Drive, $\mathbf{\$ 3 9 . 9 5}$ plus $\$ 2$ p\&h Drive, $\$ 39.95$ plus $\$ 2$ p\&h
Experimenter's Pak (see above), $\$ 199.90$ postpaid.
\square Student Pak (see above), $\mathbf{\$ 3 1 9 . 8 5}$ postpaid.
\square Engineering Pak (see above), S514.75 postpaid.
\square Business Pak (see above), \$1599.40 postpaid.
Total Enclosed 5 (Conn, res. add sales tax) By-
\square Personal Check \square M.O./Cashier's
Check \square Visa \square Master Charge Check \square Visa \square Master Charge

EQUIPMENT REPORTS

continued from page 34
assistance would most likely be available from one of them. The $V-302$ is also covered by a 2 year warranty.

The lack of storage space for the line cord hampers the portability of the unit somewhat. Although not a serious problem, it could be solved easily by extending the length of the four bumpers on the rear of the cabinet and winding the cord around them.

In addition, the unit (supplied) had a handle on the top of the cabinet that is centered well and provides a well-balanced grip. One minor problem was noticeable on the bench
one that could be solved by the use of a bailtype handle. When the unit sat flat on the test bench, it was difficult to view the screen because of the low-profile of the Hitachi V 302. By tilting the scope upward, the visibility and ease of operation improved dramatically. A bail-type handle could be added, which would also serve as a prop or stand to elevate the front of the unit and therefore add to the operating comfort.

Even though the graticule was not illuminated, the divisions were found to be easy to read and as pointed out earlier, the ease of operation was outstanding.

The V-302 is designed to operate from an AC supply of $100 / 120 / 220 / 240 \mathrm{~V}$. The size is listed as $190 \times 275 \times 400 \mathrm{~mm}(7.5 \times 10.8 \times$ 15.7 inches) and weights 8.5 kg (18.7 lbs.) Standard equipment supplied include two probes and the operation manual. Price $\$ 945$.

One final observation: the miniature-sized probes are extremely handy and do add to the ease of servicing on printed-circuit boards and IC's. There's no doubt that these probes are becoming standard equipment as they make more sense than the older large-sized units.

R-E

The BASIC Programmer's Toolkit for PET Computers

CIRCLE 104 ON FREE INFORMATION CARD
OWNERS OF PET PERSONAL COMPUTERS HAVE been known to collect software from numerous sources. Among this software are utility programs that assist the programmer in writing BASIC language programs. The best utility programs are written in machine language to minimize conflict with the user's program and to execute rapidly. Normally stored on tape, utility programs must be loaded each time they are used. If your computer system goes down for any reason, you must reload the utility program and usually carry out an inconvenient initialization procedure. To have two or more tape-resident utility programs in memory at the same time, you may have to relocate one or more so they don't overwrite each other. The BASIC Programmer's Toolkit is a firmware system that provides a real solution to the PET utility muddle.

The Toolkit is a collection of the most useful utilities programmed into a read-only memory that is always ready to use. The complete set of programs are initialized with a simple SYS command after the PET computer is turned on. The command must be given only once for each time the power is applied. If your system bombs out, or the power goes out temporarily, the Toolkit utilities can be called back into service in seconds. A very handy feature to incorporate into your computer.

The Toolkit has a ten-command repertoire.

Its unique design adds the Toolkit commands to the PET's own BASIC-command list. Once the system is initialized, you can't tell where the PET leaves off and the Toolkit takes over, except that the added commands cannot be written into program statements. The command list consists of: AUTO, DELETE, RENUMBER, APPEND, DUMP, TRACE, STEP, OFF, FIND, and HELP.
The aUTO command automatically prints statement-line numbers, starting at any legal number and increasing by any increment. Delete erases a specified line or block of lines. Renumber spreads your line numbers apart after you have inserted too many lines to allow further additions. RENUMBER updates all jump destinations in GOTO statements etc.

The APPEND command combines two programs without the gyrations required by most other methods. You load the first program conventionally and then append the second. The only requirement is that the line numbers be in proper sequence. Of course, you can use the RENUMBER command to prepare programs for the append operation.
The DUMP command lists all the variables except arrays, following program execution. As a program runs, the TRACE facility displays the line numbers of the last six statements executed. STEP is a variation of TRACE that executes one statement at a time. OFF disables the TRACE and STEP functions.

The FIND command searches all program lines or a goup of lines for a specified character sequence. It is very useful when you want to find a particular line that has been moved because of renumbering. It also helps determine if a particular variable name has already been used. Find displays all lines that include the specified reference.

Finally, The help command makes short work of careless program errors. When the PET displays an error message, typing HELP will cause the computer to display the line in which the error occurred, and, in addition, display the end of the last completed statement in reverse-video.

A well-written instruction manual includes a section that contains a more detailed explanation of how the system and its commands work. All the programs function extremely well and the examples in the instruction manual demonstrate how seemingly strange things can crop up.

The Toolkit is available in several versions that match the various PET configurations. All involve the connection of a ROM into the " B " (11×4096) block of memory. Early PET's were not wired with empty ROM sockets, so the corresponding Toolkit version consists of a board that interfaces to the memory-expansion connector and to the second cassette port Newer PET's have the extra sockets, so the applicable kits consists only of a ROM-no additional memory decoding is required. There are also versions for Expandamem and Skyles memory boards, so the Toolkit can be added without hooking into the memory connector already used to interface with the memoryexpansion board.

The BASIC Programmer's Toolkit is a product of Palo Alto IC's and is available only at local PET dealers. Chip-only versions sell for $\$ 49.95$, and the completely-assembled versions for 8 K Pets, Skyles or Expandamem boards are $\$ 79.95$. The Toolkit is an exceptional, professionally designed PET add-on. Any PET owner who is serious about BASIC programming would do well to put it at the top of his shopping list.

R-E

BE SWITCHED EXCLUSIVE SHELDAHL FLEXSWITCH ${ }^{\text {® }}$ KIT

Yours for only $\$ 10.00$

Put your imagination and a scissors to work to make the switch you want. Modify the .030 thick, non-tactile panel into a water/dust resistant switching module. Kit includes design guidelines, instructions, membrane switching panel, flexcircuit connector, press-on nomenclature and RFQ checklist.
(c) 1980 Sheldahi Inc

BUILD A MASTERPIECE OF SOUND

WK-7	COMPLETE IC INSERTER/EXTRACTOR KIT	$\$ 29.95$

INDIVIDUAL COMPONENTS

MOS-1416	14-16 PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
MOS-2428	24-28 PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
MOS-40	$36-40$ PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
EX-1	14-16 PIN EXTRACTOR TOOL	$\$ 1.49$
EX-2	24-40 PIN CMOS SAFE EXTRACTOR TOOL	$\$ 7.95$

[^0]
This easy-to-follow design lets you keep cost low by using a CRT of your choice. Its operational feature is a continuous zero baseline.

ONCE A TECHNICIAN HAS EXPERIENCED troubleshooting with a calibrated DC lab scope, he'll probably want to keep that scope probe close at hand most of the time he's at the service bench. Transistor base-emitter voltages, collector saturation voltages, and IC logic levels can be checked as easily as power-supply lines while the operating signals are present. No other instrument provides that simultaneous readout of bias and signal conditions.

Two factors have conspired to keep that scope probe out of the hands of most experimenters. The first is cost, which approaches $\$ 200$-even for a kit. That problem is easily solved by simplified design. The scope described here can be built from standard parts for $\$ 100$, and considerably less if the junk box is well stocked. Yet it boasts a 2MHz bandwidth and 10 mV -per-division vertical sensitivity.

The second factor is the annoyingly frequent need to lay down the probe, reach over to the scope, throw the input switch from DC to GROUND, check the position of the zero-volt baseline, and throw the switch back to DC. That problem is handled by incorporating a circuit that provides a continuous display of the DC ground level at a brightness level lower than that of the signal display.

How it works

The operation of the scope as a whole is best understood from the block diagram, Fig. 1.The vertical attenuator and amplifier provide a replica of the input signal, both AC and DC, at the approximately 100 -volt level needed at the deflection plates of the CRT. The electronic baseline switch interrupts the signal and grounds the amplifier input for ap-

DANIEL METZGER and DENNIS PERRY

proximately 3 ms each 15 ms , thus providing a $1 / 5$ duty-cycle baseline display at a rate of about 60 Hz -too fast for the eye to perceive the flicker.

A separate trigger amplifier is fed from a point ahead of the electronic baseline switch to preserve continuity of sweep
triggering. A Schmitt trigger produces squarewaves in sync with the input signal, and a differentiator produces sharp spikes from the edges of the squarewaves. The negative spikes initiate a linear ramp that always starts at the same selected point on the input AC wave-

FIG. 1-BLOCK DIAGRAM of the zero-baseline scope. Operation is somewhat similar to a dual-trace scope with the baseline considered as the second trace.
form. That ramp is applied to the horizontal amplifier to produce the calibrated time sweep. A source-follower provides a low output impedance for the ramp, and an op-amp comparator holds off further triggering signals until the ramp voltage returns to zero.

An auto-trigger circuit senses when the Schmitt trigger is not switching and immediately applies a voltage to the ramp genrator commanding continuous ramps, thus providing sweeps for the display of DC voltages.

A UJT baseline oscillator running at approximately 60 Hz is synchronized to the sweep generator to insure that the switching from signal to baseline will always occur during a retrace of the sweep. The baseline flip-flop drives the baseline-switching FET's at the input of the vertical amplifier.

The CRT cathode is operated at -900 volts to accelerate the electron beam toward the CRT face. Deflection sensitivity and hence calibration depend upon that voltage, so it is regulated by a string of 180 -volt Zener diodes. Vertical and horizontal position and sweep time depend upon the 9 -volt supplies, so they are transistor-regulated. The +150 -volt supply serves only differential amplifiers, and their inherent common-mode rejection makes regulation of that supply unnecessary. We shall now proceed to a detailed description of each functional block.

Vertical attenuator: Voltage dividers R_{A} and R_{B} (Fig. 2) reduce the input signal to a maximum of 0.32 volt (8 divi-

PARTS LIST (Attenuators, Fig. 2)

Resistors 1% tolerance or better, $1 / 2$ watt
R401-806,000 ohms
R402- 162,000 ohms
R403, R412-40,200 ohms
R404, R408, R409- 1 megohm
R405-604.000 ohms
R406-909,000 ohms
R407-953,000 ohms
R410-402,000 ohms
R411- 100,000 ohms
R413- 10,000 ohms
R414- 4,020 ohms
R415*-9 megohms

Capacitors

C401-. $05 \mu \mathrm{~F}$, 600 volts, ceramic
C402-100 pF, Mylar
C403, C405-C414, C416*-6-60 pF
ceramic trimmer
C404, C415*- 10 pF , ceramic
C410-62 pF, mica
C411-250 pF, mica
C412-620 pF, mica
C413-. $0022 \mu \mathrm{~F}$, Mylar
C414-. $0062 \mu \mathrm{~F}$, Mylar
S401-miniature double-pole 3-position toggle switch (Alco MST205T)
S402-3-pole, 6-position rotary wafer switch
R403-2-pole, 6-position rotary wafer switch

Miscellaneous: printed circuit board

*Note: Components required for optional $\times 10$ probe

FIG. 2.-THE ATTENUATORS. Components for the vertical attenuator are mounted on a special circuit board. Also shown in the diagram of the optional multiplier probe.
sions at 0.04 volt-per-division) or a minimum of 0.01 volt (1 division at 0.01 volt-per-division). Capacitors C_{A} and C_{B} swamp out stray capacitances to keep the reactive division ratio exactly equal to the resistive division ratio at high frequencies. Al-4-10 step-sequence permits coverage of the $10-\mathrm{mV}$ to 10 -volt-per-division range with two poles of a standard six-position switch.

Vertical amplifier: The overall gain of the vertical amplifier (Fig. 3) is about 2000 in the full-gain ($\div 4$) position, and about 500 in the calibrated $(\times 1)$ position of the vertical variable control. Resistor R201 and D201 provide input protection in the event of accidental overload. Source-follower Q201 and common-base amplifier Q202 form a trigger amplifier with a non-inverting AC gain of about 40 and a high input impedance.

Transistors Q203 and Q204 are switched on alternately by the zero-baseline flipflop (Q307 and Q308. Fig. 4), connecting the base of source-follower Q205 alternately to the signal input and to ground. The stray capacitance of these FET's amounts to about 10 pF , and produces switching transients of about 10 $\mu \mathrm{S}$ duration on the 1-megohm input line.

TOP VIEW of the scope. The amplifier board is beneath the CRT. The power-supply board is at the rear near the transformers mounted on the back panel. The sweep board is up front near the controls. The attenuator board, with its five trimmers, is on a bracket held by the vertical-sensitivity control. Astigmatism control is on rear panel near base of the CRT.

The switching frequency must therefore be held below a few hundred hertz to prevent those transients from being frequent enough to be seen on the CRT display.

Transistors Q206 and Q207 are wired as a variable-gain differential amplifier. Potentiometer R213 is the $10-\mathrm{mV}$ calibrator and sets the gain to four times the indicated vertical sensitivity with R214

FIG. 3-SCHEMATIC DIAGRAMS of the vertical and horizontal deflection amplifiers. The latter is comparatively simple because its response is limited to the sweep frequencies.
at minimum resistance. Pot R216 is the $40-\mathrm{mV}$ calibrator. It adjusts the indicated sensitivity with R214 at maximum resistance. Pot R218 is the DC balance control; it sets zero voltage between the two emitters at zero input in order that the gain control will not shift the vertical position.

Transistors Q208 and Q209 provide a
second stage of amplification, producing a maximum differential output of about 180 volts P-P. Capacitor C203 lowers the impedance between the emitters to track the decrease in impedance between the collectors caused by CRT plate capacitance at high frequencies. Since gain is essentially the ratio of those impedances, C203 tends to preserve

PARTS LIST (Amplifiers, Fig. 3)

Resistors $1 / 2$ watt, 10%, carbon composition, unless otherwise noted
R201, R225-330,000 ohms
R202-2700 ohms
R203- 6800 ohms
R204, R209- 3300 ohms
R205, R206- 33,000 ohms
R207, R208- 27,000 ohms
R210, R211-270 ohms
R212- 560 ohms
R213- 20 ohms, trimmer, vertical mount
R214-200 ohms, potentiometer
R215, R217-470 ohms
R216- 500 ohms, trimmer, vertical mount R218-100 ohms, trimmer, vertical mount
R219, R220- 10,000 ohms, 2 watts
R221-33 ohms
R222-1000 ohms, trimmer, vertical
mount
R223-1000 ohms, potentiometer
R224- 680 ohms
R226, R230-2000 ohms, trimmer, vertical mount
R227, R228-47,000 ohms, 1 watt

R229-3600 ohms
R231-2200 ohms
R232- 5000 ohms potentiometer
R233-4700 ohms

Capacitors

C201-1200 pF, Mylar
C202- $100 \mu \mathrm{~F}, 15$ volts, radial-lead electrolytic
C203-820 pF, mica
C204-330 pF, mica
C205, C206, C208- $0.1 \mu \mathrm{~F}$, ceramic disc
C207, 1800 pF, Mylar

Semiconductors

D201, D202-1N914 or similar silicon diode
Q201, Q203, Q204, Q205, Q210-MPF4393 or similar N -channel FET (Motorola)
Q202-2N4402 or similar
Q206, Q207-2N4400 or similar
Q208, Q209, Q211, Q212-2N3440 or similar
Miscellaneous: PC or perforated circuit board, hookup wire, mounting hardware, transistor sockets, etc.

ZERO-BASELINE DISPLAY permits reading the DC component of this waveform. Scale factor is $1 \mathrm{~V} /$ div and the sinewave is 3 volts peak-to-peak riding on a 4 -volt DC level.
a constant gain as frequency increases. Because an $820-\mathrm{pF}$ trimmer would be large and unstable, we adjust the associated resistor (R202) to suit the capacitor, instead of vice-versa. Capacitor C203 thus determines the stage gain, and should be altered if necessary to produce a stage gain of about 50 .
Horizontal amplifier: This amplifier (Fig. 3) is similar to the vertical amplifier except that the low-voltage differential stage is omitted and the entire gain (about 70) is achieved in the high-voltage stage. The differential output voltage required is about 250 volts $\mathrm{P}-\mathrm{P}$ because the second (less sensitive) set of CRT deflection plates is used. Bandwidth is about 500 kHz .

FIG. 4-THE SWEEP and zero-baseline generator circuits comprise the most complex sections of the instrument.

PARTS LIST (Sweep and zero-baseline generators, Fig. 4)

Resistors $1 / 2$ watt, 10% unless otherwise noted
R301-220,000 ohms
R302-1 megohm
R303, R304, R306-4700 ohms
R305, R311-1800 ohms
R307, R317-20,000 ohms, potentiometer
R308, R312, R313, R315, R333-1000 ohms
R309-22 ohms
R310, R318, R331- 10,000 ohms
R314- 15,000 ohms
R316, R335, R336-27,000 ohms
R319-10,000 ohms, trimmer, vertical mount
R320-100,000 ohms, 1\%
R321-25,000 ohms, 1%
R322- 10,000 ohms, 1%
R323, R327-3300 ohms
R324- 100,000 ohms
R325-5000 ohms, trimmer, vertical mount
R326-18,000 ohms
R328-56,000 ohms

R329, R330-220 ohms
R332- 270 ohms
R334, R337-2000 ohms

Capacitors

C301-. $05 \mu \mathrm{~F}, 600$ volts, ceramic disc
C302, C304-47 pF, ceramic disc
C303, C307-100 pF, ceramic disc
C305, C306- $10 \mu \mathrm{~F}, 25$ volts, axial-lead electrolytic
C308- $4.7 \mu \mathrm{~F}$, 25 volts, axial-lead electrolytic
$\mathrm{C} 309-.01 \mu \mathrm{~F}$, ceramic disc
C310*-1 $\mu \mathrm{F}$, Mylar
C311*-0.1 $\mu \mathrm{F}$, Mylar
C312*-. $01 \mu \mathrm{~F}, \mathrm{Mylar}$
C313*-. $001 \mu \mathrm{~F}$, Mylar
C314**- 100 pF , ceramic trimmer
C315-680 pF, ceramic disc
C316-2 $\mu \mathrm{F}, 25$ volts, axial-lead electrolytic
C317, C318- $0.1 \mu \mathrm{~F}$, ceamic disc
C319- $5 \mu \mathrm{~F}, 25$ volts, axial-lead electrolytic
*Note: select to keep ratios within $\pm_{1 \%}$
**Note: In prototype, C314 was made by connecting a 47-pF disc in parallel with a
$6-60-\mathrm{pF}$ ceramic trimmer

Semiconductors

D301-D308-1N914 or similar silicon diode
IC301-555 timer
IC302-LM318 op-amp (National)
Q301, Q305-MPF4393 or similar N -channel FET (Motorola)
Q302, Q303, Q307, Q308-2N4400 or similar
Q304-2N4402 or similar
Q306-2N4871 or similar unijunction transistor
S401, S403-see attenuator parts list
S301-3-pole, 11-position rotary wafer switch (Centralab PA-10009 or equal)
S302-2-pole, 4-position rotary switch
Miscellaneous: PC or perforated circuit board, shielded cable, transistor and IC sockets, mounting hardware, knobs, etc.

FIG. 5-THE POWER SUPPLY is simple and inexpensive to build. The voltage-tripler replaces the expensive and dangerous high-voltage power transformer used in many scopes. The string of Zener diodes replaces a high-resistance voltage-divider string.

Trigger circuits: Source-follower Q301 (Fig. 4) provides the high input impedance required during external triggering, and the low driving impedance necessary for good sensitivity of the Schmitt trigger, Q302 and Q303. The trigger will operate with 0.1 volt P-P input, and trigger up to 5 MHz with 0.3 -volt P-P input. The edges of the Schmitt-trigger
output (inverted or non-inverted) are coupled through switch S302-a capacitor and C307 to the trigger input of the NE555, IC 301; that is where the negative edges are used to initiate the sweep ramps.

In the DRIVEN mode, the trigger input is held high by the +9 -volt supply through R314 and triggering occurs only by nega-

PARTS LIST (Power supplies, Fig. 5)

Resistors $1 / 2$ watt, 10% carbon

composition unless otherwise noted

R101- 470,000 ohms
R102- 10 megohms
R103- 500,000 ohms potentiometer with SPST switch
R104- 10 megohms, potentiometer
R105- 680 ohms
R106- 100,000 ohms, potentiometer
R107, R110-2200 ohms
R108- 56,000 ohms
R109- 22,000 ohms
R111- 47,000 ohms

Capacitors

C101, C102- 0.1 uF, 600 voits, tubular
C103, C104- $0.1 \mathrm{uF}, 1000$ volts, tubular
C105-. 22 uF, 1000 volts, tubular
C106, C107-40 uF, 200 volts, axial-lead electrolytic
C108, C110-470 uF, 25 volts, radial-lead electrolytic
C109, C111-0. 1 uF ceramic disc
$\mathrm{V} 1-\mathrm{CRT}, 3 \mathrm{RP} 2$ was used in prototype. 3EP1,3RP1,3BP1 and 3ACP11 can be used. See text.

Semiconductors

D101-D106, D114-1N4007

D107-1N5242 Zener diode, 12 volts, 500 mW
D108-1N5259 Zener diode, 39 volts, 500 mW
D109-D113-1N5280 Zener diode, 180 volts, 500 mW
D115, D116, D118, D119-1N4001
D117, D120-1N5240 Zener diode, 10 volts, 500 mW
Q101-D41D1 (GE) or similar PNP silicon transistor
Q102-D40D1 (GE) or similar NPN silicon transistor
F101-1/8-amp fuse
PL101-neon pilot-light assembly (NE-2 lamp with 68 K resistor)
S101-SPST switch (part of R103)
T101-power transformer, 250 volts center-tapped, $25 \mathrm{~mA} ; 6.3$ volts, 1 amp . (Stancor PS-8416 or equivalent)
T102-power transformer, 24 volts centertapped, 100 mA (Stancor P-8395 or equivalent)
Miscellaneous: Fuse holder, line cord, PC or perforated circuit board, hookup wire, terminal strip, MuMetal shield for CRT, CRT socket, transistor sockets, etc.

SWEEP LINEARITY is evident in this photo of a $500-\mathrm{kHz}$ triangle waveform at $1 \mathrm{mV} /$ div.
tive pulses from C307. In the auto mode, AC detectors D302, D303, and C306 furnish the positive supply as long as the Schmitt trigger is switching. However, if the trigger remains inoperative for longer than about $150 \mathrm{~ms}, \mathrm{C} 306$ discharges and R316 pulls the trigger input low, resulting in automatic triggering with no input signal.

Sweep circuit: Transistor Q304 is a vari-able-current source that charges the selected timing capacitor (C310 through C314) at a linear rate depending on the sweep variable control and the selected timing resistor (R320 through R322). Pin 7 of the NE555 automatically discharges the capacitor whenever pin 6 rises to +6 volts. A source-follower Q305 buffers the ramp since any current drawn from it would destroy its linearity. Pot R325 reduces the ramp to 4.4 volts, thus providing 11 divisions of sweep to the 0.4 volt-per-division horizontal amplifier.
continued on page 80

TEష్NOLOGY TODAM

MACHINES
 THAT CAN
 talk

Here's a look at some of the hardware available; what it does, what it costs, and how it's used. You may be surprised how much of it there is, and where.

MARTIN BRADLEY WEINSTEIN

LAST TIME WE LOOKED AT THE PROBLEM of how a human voice might be synthesized, from the simplest digitized recording media to the sleeker new equipment (Radio-Electronics, March 1980).

The block diagram (Fig. 1) boils it all down into the most common areas of circuitry (by function) found in the more sophisticated general vocabulary synthesizers. How each function is handled varies widely from manufacturer to manufacturer, and often from product to product. But in some form or another, those elements almost always occur.

Somehow, having actual equipment to look at and talk about (eventually, to listen to) tends to make things easier to understand. So here's a brief review of the equipment available today, plus a peek at early tomorrow.

A TALKING CALCULATOR, the TSI Speech + is a most-handy device.

FIG. 1-BLOCK DIAGRAM OUTLINES MOST COMMON CIRCUITRY (by function) found in the more sophisticated general-vocabulary speech synthesizers.

Telesensory Systems, Inc.
Speech $+\sqrt{*}$ is a talking calculator designed for the blind and vision-impaired. In addition to operating as any normal calculator might, it offers the option of having its calculations announced by a built-in, 24-word-vocabulary speech snythesizer.

Telesensory Systems. Inc. (TSI, 3408 Hillview Avenue, P.O. Box 10099 , Palo Alto, CA 94304), the manufacturer of

Speech + , offers the board-in English -for $\$ 150$. The same vocabulary is available in a small printed-circuit board module (less filters, amplifier, speaker) -in English, French or German-for $\$ 95$. And for $\$ 179$, two 64 -word modules are available: one designed for announcing key hits on typewriter-style keyboards, the other for announcing electronic instrumentation readings.
Those modules contain little more than a custom MOS microprocessor

TELESENSORY SYSTEMS
model Speech +
built for TSI by General Instruments, and a ROM or two. Custom vocabularies are available to OEM's interested in large-volume purchases, and to those of us willing to invest $\$ 200$ per word for custom coding.
TSI has also announced a two-chip set of custom LSI IC's that can be applied to speech synthesis, as well as other tasks, but details are still a few months away.
Just now out from TSI is a special $\$ 1500$ speech snythesizer designed for elevators. ("Penthouse. going up.") The Elevator Voice Module includes circuitry that interfaces with the elevator controls, a speech synthesizer with custom elevator vocabulary, and the audio amplifier and speaker.

Votrax Division

Votrax Division of Federal Screw Works, (500 Stephenson Highway, Troy, MI 48084) manufactures what may be the broadest line of voice synthesizers available today.

Starting at the top of the pile, the LVM-70 Business Communicator is a fixed-vocabulary computer peripheral designed to tie into from 4 to 64 telephone lines. It offers up to 128 seconds of speech, translatable into as many as 256 individually-addressable variable-
length messages. Voice quality is excellent. That is the kind of voice/speech synthesizer often used with banks, telephone services, and "talking" computer services. Prices vary from under $\$ 10,000$ to over $\$ 50,000$, depending upon capabilities.

Working our way down the price stream, we find a generalized-vocabulary phonetic (phoneme-based) speech synthesizer capable of speaking English, German, Spanish, Italian, Japanese, French, and Farci. The key to that flexibility is an un-minimized phoneme set, including 122 selectable phonemes; in addition, each 12 -bit command word permits 8 levels of inflection, or pitch, and 4 phoneme rates, or duration... yes, you can program it to speak with a

BUSINESS COMMUNICATOR model LVM-70 is a fixed vocabulary computer peripherial from Votrax.
drawl. The ML-I Multi-Lingual Voice System doesn't come cheap (except, perhaps, comparatively, in terms of value received), with prices between roughly $\$ 6000$ and $\$ 8000$, depending on configuration, plus $\$ 1500$ for the companion keyboard and more for every

MULTI-LINGUAL VOICE SYSTEM, model ML-1, also from Votrax, speaks in seven languages, including Farci.
language after English (standard). It's well worth it, though, where multilingual capabilities are needed in conjunction with a computer, as evidenced by the success of the ML-I in schools.

In the $\$ 3500$ to $\$ 5000$ range, the Votrax VS-6 Electronic Voice System uses 8 -bit command words to select 61 phonemes and four levels of inflection; one VS-6 user has reportedly developed a vocabulary of over 300.000 words for it. While priced well beyond most hobby budgets, the VS-6 performs admirably in a number of fascinating applications, including military flight simulators,

AS MANY AS 300,000 WORDS have been developed by one user of the Votrax VS-6 Electronic Voice System.
talking instrumentation, handicapped aids, and talking OCR (optical character recognition) printed copy readers.

Votrax also manufactures the Radio Shack TRS-80 Voice Synthesizer, and includes with it software for a talking blackjack game. The user hears cards shuffling and the banter of a "wise guy" dealer.

RADIO-SHACK SPEECH SYNTHESIZER is a part of their TRS-80 personal computer system and is available as an option.

HC Electronics, Inc.

That division of American Hospital Supply Corporation (HC Electronics, Inc., 250 Camino Alto, Mill Valley, CA 94941) manufactures and distributes products for language and speech therapy. Their two speech snythesizers, Phonic Mirror HandiVoice models HC110 and HC12O, are actually manufactured for them by Votrax.

The HCllO is a lap-size, flat device designed for young children, the handicapped, or developmentally disabled persons with speech impairments or disabilities. Most of its surface is covered by its 128 -key keyboard, itself covered with one of three overlayswords, graphics, or symbols. It is pre-

HANDIVOICE HC120 is a portable device for language and speech-therapy applications.
programmed with 373 words, 45 phonemes, 26 letters (the English alphabet), 13 morphemes (standard word prefixes and suffixes), and 16 short phrases like "My name is...", "How are you?",
"Would you come here?".
The HCl 20 , by comparison, is a physically smaller unit that offers all the capabilities of the HC110, plus an additional 520 words, accessed by a 4×4 keyboard and a 3 -digit control code.

Computalker Consultants

One of the least expensive, though highly capable, speech synthesizers available that is based on phonemes, yet capable of direct parameter control, is the CT-I Speech Synthesizer by Computalker Consultants (P.O. Box 1951, Santa Monica, CA 90406).

HIGH-CAPABILITY CT-1 SPEECH SYNTHESIZER from Computalker is available for the TRS-80, Apple II and S-100 computer systems.

The CT-1 is in the $\$ 425$ to $\$ 550$ range, depending on software options, and plugs into the S-100 bus. Pre-packaged AC-powered versions for Apple II (CT$I A)$ and the TRS-80 (CT-IT) are available for $\$ 595$.

In the Direct Parameter Control Mode, signals modeled after previouslydecoded words are used to recreate them. That is obviously a limited-vocabulary approach, but the naturalness of speech is especially high; even the mannerisms of the original speaker are preserved.
The Phonetic Mode, by comparison, is phoneme-based, but with a twist. Target values for each phoneme parameter are first located, then a smooothingcalculation performed to calculate parabolic trajectories between them. The result is less mechanical-sounding speech.

The computer hobbyist interested in experimenting with speech snythesis is strongly urged to investigate Computalker.
Also, about a year from now, expect news from Computalker about a totally digital system, replacing their current analog approach. Much of the cost of their current hardware is attributable to precision tuning and calibration of the many analog-circuit sections, a cost that the all-digital approach promises to all but eliminate.

Texas Instruments

While the TI approach to speech syn-
thesis leads inevitably to fixed vocabulary products (for the time being, at least), their expertise with high-density memories and the economies of highvolume production has yielded a group of products affordable and useful at a general-consumer level.
Speak \& Spell ${ }^{\text {TV }}$ (mine cost about \$55), was introduced a couple of years ago. It conducts spelling bees and plays word games, primarily for children. (My wife and I both get a kick out of ours, though we have no children.)

New ROM modules to expand the vocabulary of Speak \& Spell have now been introduced. Vowel Power ${ }^{\text {nv }}$ (recommended resale \$15) adds 140 words to help children master vowel sounds in four categories. Two new Super Stumpers modules (also \$15 each) for grades 4-6 and 7-8 add word lists to cover such problems as silent letters, irregular spellings, double consonants, and homonymous spellings.

TEXAS INSTRUMENTS' NEW HOME COMPUTER has a speech-synthesizer accessory available. They also use synthesizers in other products.

The heart of the Texas Instruments approach to speech synthesis is multiplestage digital filtering and Linear Predictive Coding-a mathematical approach to modeling, analyzing, and synthesizing the human voice. While TI is producing 40,000 to 60,000 synthesizers-on-a-chip each month, their entire production output is currently going into TI products.
Two of those products are their talking Language Translator (about $\$ 300$, with $\$ 60$ modules to translate English, French, Spanish, German, Chinese, and Japanese) and their new Home Computer. The Solid State Speech TM peripheral (suggested resale $\$ 150$) synthesizes a 200 -word vocabulary.

Who else?

Lexicon, Craig, Matsushita, and others have all admitted to "looking at" talking products. National Semiconductor has announced a one-chip synthesizer, about which little has reached us. Ohio Scientific offers a speech synthesizer of some description for their Challenger computers, but repeated calls to the company have resulted in no information to date.
Stay tuned. There's no telling who will speak up next.

BAEMARD
 SATELITE TV REEEVER

Abstract

Conclusion of Bob Cooper's series on operational satellites that are relaying television programs and how we can receive their signals. This story describes receiver-system hardware and how it goes together.

ROBERT B. COOPER, JR.

IN THE PREVIOUS SIX PARTS OF THIS ARticle series, appearing in the August through October 1979 issues and the January through March 1980 issues, we have developed the background for the presently operational domestic and INTELSAT satellite systems that are transmitting television via satellite relay to virtually every portion of the globe. In the January and February issues, we have looked closely at the construction that is required to build your own lowcost home satellite television receiving terminal using a special spherical antenna design (February 1980 issue of RadioElectronics), a single conversion $4-\mathrm{GHz}-$ to $-70-\mathrm{MHz}$ GAAS-FET LNS plus active mixer package (March 1980 issue of Radio-Electronics) with an accompanying 24-channel frequency-agile tuning system.

In this seventh and final part, we will describe the $70-\mathrm{MHz}$ IF-to-baseband system, and show you how to reconvert the baseband video and audio signals back to a standard NTSC-format RF carrier that can then be tuned in on your standard television receiver.

Gain at 70 MHz

In part six of this series we determined the amount of gain required between the $4-\mathrm{GHz}$ feedhorn antenna receiving energy from the spherical reflector surface, and the baseband demodulator operating at 70 MHz . We determined that between 70 and 90 dB of voltage gain is required and that around 20 to 25 dB of that gain should be provided by the GAAs-FET LNA
(two stages). The amplified signal from the LNA should then drive a similar GAAs-FET active mixer converting our $4-\mathrm{GHz}$ signal down to a more manageable (and comfortable!) $70-\mathrm{MHz}$ IF. The balance of the gain should then be provided by the $70-\mathrm{MHz}$ circuitry.

Getting gain at 70 MHz is so simple that it almost becomes a waste of space here to tell you how to get it. Here are several suggestions:

1. You need 50 dB of gain here.
2. How you get it is relatively unimportant although if you can keep the noise figure of the IF amplifier at or below 8 dB you will be much better off. (Too high a noise figure here will degrade the carefully created low noise figure from the $4-\mathrm{GHz}$ to $70-\mathrm{MHz}$ mixer.)
3. You may not need to build this IF amplifier: it may be lying over in the corner of your shop or down the street
Virtually all of the pre-1970 era microwave equipment employed a $70-\mathrm{MHz}$ IF strip, usually made up of six to ten tubes operated in cascade or cascode. Typical IF strings have 50 to 90 dB of gain (much more than you need and you'll have to cut it back) and such gear is around in surplus outlets (usually without power supply) for around $\$ 10$ an IF strip. Another source for $70-\mathrm{MHz}$ IF gain is a CATV or MATV line amplifier. Typical line amps (the boards are available at local CATV firms, where they are taken out and discarded or sold as junk) have 25 to 30 dB of gain maximum and it will take a pair to get the gain you require.

However, the easiest-and perhaps for the most cheapest-way to get 50 or so dB of IF gain at 70 MHz is to investigate the Motorola AWT-120, a threelead device that operates from near DC to around 300 MHz with 14 dB of gain with an acceptable noise figure. Four of those in series will give you 56 dB of voltage gain at 70 MHz . The AWT- 120 is easy to make operate. Of the three leads, there is a ground pin, an input pin, and an output pin. The operating voltage (12 volts regulated) feeds into the output pin through a 330 -ohm resistor. You couple into and out of the device through a .01 disc capacitor. Just pop four in a row on a piece of G-10 double sided board and you are in business. The AWT-120 costs around $\$ 6$ per device; for $\$ 30$ or so you have the full $50+$ dB-gain IF strip.

Note however that our gain is spread from near DC to 300 MHz . And all we really want is the $30-\mathrm{MHz}$-wide spectrum between 55 MHz and 85 MHz , centered on 70 MHz . Obviously we need some bandpass filtering in here someplace.
There are sound arguments for placing the $70-\mathrm{MHz}$ bandpass filter ahead of the IF strip, and for placing it after the IF gain string. Some builders compromise and place it in the center of the string, or between the first and second AWT-120 devices. Briefly, if you place the bandpass filter ahead of the IF gain string, you run the risk of permitting a mistuned (or improperly built) $70-\mathrm{MHz}$ bandpass filter to degrade the noise figure of the system. The bandpass filter will have some loss and that loss be-

FIG. 1-BLOCK DIAGRAM shows how the $70-\mathrm{MHz}$ signal from the mixer is converted to an NTSC RF output suitable for connection to the antenna terminals of your TV receiver.
comes part of the total system signal-to-noise equation. We'll describe a nearly foolproof $70-\mathrm{MHz}$ bandpass filter for you shortly.

If you place the bandpass filter after the IF gain string, you run the risk of amplifying in the IF string undesirable heterodyne-produced products that may sum the desired signals coming out of the $4-\mathrm{GHz}-\mathrm{to}-70-\mathrm{MHz}$ IF port on the mixer and causing the AWT-120 (or whatever) IF string to go into saturation. One solution is to run the AWT120 first stage immediately after the 70MHz IF output from the mixer, then stick in your bandpass filter, and proceed thereafter to amplify the $70-\mathrm{MHz}$ signal in another three stages. We'll leave the final decision to you, noting only that we have placed the $70-\mathrm{MHz}$ bandpass filter at the end of the IF string in the block diagram shown in Fig. 1.

Bandpass filter construction

There is no way we can suggest in good conscience that you will be able to construct and tune up this bandpass filter by eye or meter. You will need to run down a good CATV-type sweep generator and marker system to show you where in the spectrum you are tuning, and a detector and display. The sweep system should span the 50 -to-$100-\mathrm{MHz}$ region as a minimum to align the bandpass filter properly.

70-MHZ IF BANDPASS FILTER is designed to pass a $30-\mathrm{MHz}$-wide spectrum centered on 70 MHz to provide the satellite-TV receiver with the selectivity required to separate adjacent satellite transponders.

Building the bandpass filter, shown in Figs. 2-a and 2-b, is not complicated, and if you follow the layout shown and mount the device in the Bud box recommended you won't have any problems. The coil forms, wire size, and capacitors (all are 5% dipped micas; don't substitute!) are important. If you change anything in the parts called for, you
have just entered the R and D business and you'll have to recompensate other part valves accordingly. Properly constructed, and aligned, the passband of the IF filter will be from 55 to 85 MHz , $\pm 3 \mathrm{~dB}$ at the very edges, with less than $1.5-\mathrm{dB}$ insertion loss and a passband ripple of less than $\pm 0.5 \mathrm{~dB}$ from 60 through 80 MHz .

70 MHz to baseband

The utter simplicity of recovering good quality satellite TV video and audio becomes apparent as you study Fig. 3 (for the video) and Fig. 4 (for the audio). The secret is that you are coming into the field "late;" all of the dozentransistor circuits worked out initially, some three or more years ago, have fallen by the wayside since clever design people such as Taylor Howard of Stanford tackled the project with an eye to reducing every section of the system to its basic required parts.
The $70-\mathrm{MHz}$ IF input, following the $70-\mathrm{MHz}$ IF gain-string, plugs into the input side (left hand side) of Fig. 3. The NE564 phase-locked loop makes a dandy video demodulator for this application, although note that there is this 5% warning:

The 564 is operating at the upper end

FIG. 2-70-MHZ BANDPASS FILTER is relatively easy to build and is housed in a standard Bud enclosure.

PARTS LIST (70 MHz to baseband, video/audio	
Resistors $1 / 4$ watt, 10% unless otherwise	C7-1.5 to 8 pF trimmer
specified	C8, C9-3 pF dipped silver mica
R1-2200 ohms	C10-330 pF
R2-27,000 ohms	C11-4400 pF
R3. R7: R27-1000 ohms	C12-91 pF
R4-200 ohms	C13-300 pF
R5, R17, R23, R28, R29-10,000 ohms	C14-100 F , 10 volts, electrolytic
R6-3900 ohms	C16-1 $\mu \mathrm{F}, 20$ volts, electrolytic
R8-R10, R12-147 ohms	C17-15 $\mu \mathrm{F}, 15$ volts, electrolytic
R11-41 ohms	C18-300 $\mu \mathrm{F}, 16$ volts, electrolytic
R13: R19-22.000 ohms	C20-22 $\mu \mathrm{F}, 6$ volts, electrolytic
R14-470 ohms	IC1- 7812 voltage regulator, +12 volts
R15, R16, R18-560 ohms	IC2-NE564 phase-locked loop
R20, R21- 10,000 ohms. potentiometer	IC3-NE592 video amplifier
R22-270 ohms	Q1-Q3-2N2222
R24-R26-100,000 ohms	D1-HP5082/2800 Schottky diode (Hew-
R30-510 ohms	lett-Packard)
Capacitors	D2-1N5248 Zener diode. 12 volts
C1, C4, C6, C15, C19-. $01 \mu \mathrm{~F}$ ceramic disc	RFC1- $100 \mu \mathrm{H}$
$\mathrm{C} 2-1 \mu \mathrm{~F}, 15$ volts, electrolytic	RFC2-2.7 $\mu \mathrm{H}$
C3-100 $\mu \mathrm{F}, 20$ volts, electrolytic	RFC3-4.7 $\mu \mathrm{H}$
$\mathrm{C} 5-.001 \mu \mathrm{~F}$ ceramic disc	

FIG. 3-BASEBAND VIDEO/AUDIO SYSTEM recovers video and audio signals from the $70-\mathrm{MHz}$ output of the IF strip.
of its frequency range in this application, and you may find that some small percentage of the 564 's around will not demodulate properly the video from the $70-\mathrm{MHz}$ carrier. On the other hand (here's the good news), some 564's function to nearly 100 MHz . They are not touchy; several of the newer commercial receivers use the same device for this purpose and thousands of homebrewed receivers have been built using this approach.

The 564 provides video input that is amplified by a garden-variety 2 N 2222 . Note that the audio-subcarrier comes off the emitter of the 2 N 2222 through a 270 -ohm resistor. We'll talk about recovering the audio shortly.

Following the 2 N 2222 is a CCIR deemphasis network. That's a collection of passive devices designed to establish the proper video baseband curve that matches the pre-emphasis networks used by the satellite TV transmitter on the uplink end. Without that network in place you'll get something less than true colors and will experience other video problems. Following the CCIR deemphasis network is a $4.2-\mathrm{MHz}$ lowpass filter network. This is in place to insure that the $6.2-, 6.8,-$ or $7.4-\mathrm{MHz}$
audio subcarrier does not get on into the balance of the video circuits. Frequencies above 4.2 MHz in the baseband region do not contribute to the video quality and in fact, if left in, will create high-frequency video noise on your baseband video signal.

Between the second 2N2222 (following the NE592) and the third such stage is a harmless-looking Schottky diodethe HP 5082/2800. That is a clamp diode. You may recall from previous sections that the uplink signals transmitted to the satellites are "frequency dithered" at a $30-\mathrm{Hz}$ rate as a means of dispersing the energy waveform over a relatively wide band (36 MHz if you follow out to the 1% energy levels). That dispersal action was motivated by designers of early INTELSAT systems, who feared they might cause interference to terrestrial microwave circuits operating in the same $3.7-$ to $-4.2-\mathrm{GHz}$ region. Spreading the waveform energy out with the $30-\mathrm{Hz}$ waveform reduces the probability that any appreciable amount of satellite TV downlink energy will get into any terrestrial system. To get rid of the $30-$ Hz waveform we shove the video into a hard clamp. The Schottky diode is fast and it clamps the $30-\mathrm{Hz}$ waveform to
ground by as much as 40 dB or more. That either eliminates the $30-\mathrm{Hz}$ flicker in the picture or reduces it to the point where it cannot be seen.

There are these caveats and cautions about this portion of the system:

1. Use only double-sided board; good quality G-10 board will do.
2. Mount the finished board in a container. grounding all the way around on both sides of the board. Place the 15 VDC regulated line on the backside of the board along with power supply bypasses and the 7812 regulator
3. The $70-\mathrm{MHz}$ VCO output test jack is for setting the operating frequency of the PLL to 70 MHz . Adjust the $1.5-\mathrm{to}-8 \mathrm{pF}$ trimmer (C7) for 70 MHz (a counter is handy but you could do it with the TV monitor tuning for best picture).
4. Adjust pot R20 off pin 1 of the NE592 for the same voltage on pin 1 as you have on pin 14 of the same device.
5. The AFC output shown is not totally applicable to the system you are presently building. As you get more sophisticated in using your home terminal you may wish to add an AFC system later on (as many have) and that brings it out so it is available when you wish to add the feature.
6. The output of the NE592 (pins 7 or 8) is selectable for good reason. As long as your local oscillator is driving the $4-\mathrm{GHz}-\mathrm{to}-70-\mathrm{MHz}$ mixer on the low side (i.e. 4 GHz input frequency minus the VTO8360 local-oscillator source equals 70 MHz) you will find the video in the proper polarity on pin 8. If you mistune and end up with the local oscillator on the high-frequency side. you'll have to swap the video output lead to pin 7 to re-establish the proper video polarity. A simple switch here will make changing simple.
7. The purpose of 10 K video-gain pot between pins 12 and 3 on the NE592 is to set your video output level into your NTSC format RF modulator. Simply tune it for best looking picture, through the modulator, on your standard TV set (typically in the 1 volt peak-topeak region if you can look at the level on a scope.)
There is absolutely nothing else to adjust or fiddle with! You have just gone from 70 MHz to relatively complicated FM video to baseband with a minimum of harrassment.

Recovering Audio

The RCA SATCOM and Western Union WESTAR birds carry their FM audio on either 6.2 or the more common $6.8-\mathrm{MHz}$ subcartiers. When you demodulate the $70-\mathrm{MHz}$ IF signal, the NE564 PLL recovers that higher-frequency baseband component right along with the video. We take it off after the first 2N2222 baseband amplifier and send it on to a second demodulator which is L-C tuned to the 6.2 - or 6.8 MHz subcarrier frequency.

Two methods of recovering the audio are presented here. In Fig, 4 we have the basic (Taylor Howard developed) audio demodulator that uses a 2 N 3565 amplifier, a tuned network designed for either 6.8 - or $6.2-\mathrm{MHz}$, a second 2 N 3565 amplifier, a (Motorola) HEP6063P demodulator (or RCA CA3065), and finally an audio amplifier. That system has seen thousands of duplications by home builders and it works just fine.

Simply tune L1 and L2 for the desired frequency ($6.8-$ or $6.2-\mathrm{MHz}$) and then tune L3 for recovery of the audio on that frequency by simply listening on some suitable audio-display system. There is a 50 K volume-control pot and those are the only adjustments that are in the system.

Figure 5 shows how to do the same thing for about $\$ 12$ for each audio subcarrier desired and perhaps 15 minutes of your time. Several satellite TV enthusiasts in the Indianapolis area, where RCA has a production facility, discovered that the RCA XL-100 audio demodulator (model PM-200) can be fieldmodified with a pair of capacitors to tune not the usual $4.5-\mathrm{MHz}$ subcarrier

FIG. 4-6.8-MHZ AUDIO DEMODULATOR. Circuit is duplicated for recovering $6.2-\mathrm{MHz}$ audio signal.
channel found in the NTSC system but rather the 6.2 - or $6.8-\mathrm{MHz}$ subcarrier found in the satellite system. The PM200 is a stock replacement item for XL100 chassis: it is a complete module ready to hook up and operate (RCA's stock number is $130-753$). You go into the module and add capacitors C1 and C2 (both 33 pF to hit $6.8-\mathrm{MHz}$) as shown. Input is through pin 3. As noted, the cost of this module (new, through an RCA parts house) is in the $\$ 12$ range.

Once again, recovering the satellite audio is not much of a trick.

Modulating to NTSC

Now that you have the baseband video and audio displayed on a colorvideo monitor and audio system, it

RF MODULATOR construction followed by do-it-yourself satellite-TV enthusiasts. This module is the RF modulator described in the text using the LM1889 IC device.
would be nice to watch your favorite programming from satellite programs on your TV receiver. In fact, if you are like most of us, you don't own a video monitor in the first place. So let's get the baseband signal back to NTSC format RF.

PARTS LIST

(Audio demodulator, Fig. 4)
Resistors $1 / 4$ watt, 10% unless otherwise noted
R1-3300 ohms
R2- 2200 ohms
R3-1000 ohms
R4- 150.000 ohms
R5-270,000 ohms
R6-6200 ohms
R7- 50,000 ohms potentiometer

Capacitors

C1, C4, C7-. $001 \mu \mathrm{~F}$
C2-68 pF dipped mica
C3-3 pF dipped mica
C5, C6-91 pF dipped mica
C8-. $01 \mu \mathrm{~F}$
C9-. $047 \mu \mathrm{~F}$
C10-50 pF dipped mica
C11-12 pF dipped mica
$\mathrm{C} 12-1 \mu \mathrm{~F} 10$ volts, electrolytic
C13- $0.1 \mu \mathrm{~F}$
C14-. $33 \mu \mathrm{~F}$
C15- $250 \mu \mathrm{~F} .16$ volts, electrolytic
$\mathrm{C} 16-.47 \mu \mathrm{~F}$
Q1, Q2-2N3565
IC1 -7812 voltage regulator. +12 volts
IC2*-HEP6063P or CA3065
IC3*-LM380
L1. L2-adjustable RF coil. 3-7 $\mu \mathrm{H}$ (J.W. Miller No. 9051)
L3-adjustable RF coil. $7-14 \mu \mathrm{H}$ (J.W. Miller No. 9052)
*Note: The RCA CA3134GM can replace the CA3065/LM380 combination

MODIFIED RCA PM-200 FOR TVRO RECEIVER

FIG. 5-ALTERNATE APPROACH to subcarrier audio detection uses a standard module from an RC TV receiver.

If you own a video-tape recorder, you already have a modulator. Simply connect the video output of the satellite receiver to the video input jack on the VCR, the AUDIO OUT to the AUDIO IN and switch the VCR to CAMERA INPUT.

Now run a piece of RG-59/U coaxial cable from the output of the VCR to your TV receiver(s). And the satellite signals will appear on the modulated channel determined by the VCR modulator switch (typically Channel 3 or 4).

FIG. 6-NTSC RF MODULATOR for Channel 3, 4, or 5.

If you don't have a VCR, you'll need to build, or buy, your own video RF modulator. The most common RF modulator used by satellite TV enthusiasts is shown in Fig. 6. This system uses the LM1889 IC that is really a miniature TV transmitter disguised as an IC. The LM1889 device (or something very similar) is found in dozens of TV games, VCR modulators, computer modulators, and so on. The 1889 is available from firms such as Poly-Pak, usually for under $\$ 5.00$. A complete modulator kit, using the LM1889 is available (model PXP-4500) for around \$25 (ATV Research, 13-B Boardway, Dakota City, NB 68731).

The schematic in Fig. 6 shows what is involved. Coil L2 establishes the 4.5MHz sub-carrier for the audio in a tuned network and a 2 K pot connected to pin two of the 1889 establishes the saturated white level for the video. Although the schematic establishes tuning procedures (off pins 8 and 9 of the 1889) for Channel 3 or 4 , many people have also found that the system will function on VHF TV Channel 5 as well, by adjusting the tank circuit accordingly.

A modulator such as this is capable of putting out around 10.000 microvolts of maxium signal (3,000 is more typical). That is more than enough RF voltage to drive through several hundred feet of RG-59/U coaxial cable into, perhaps, as many as a half dozen TV receivers con-

PARTS LIST (RF-modulator, Fig. 6)
Resistors $1 / 4$-watt, 10% unless otherwise specified.

R1. R6- 15.000 ohms
R2, R4-47.000 ohms
R3, R9- 2700 ohms
R5- 3300 ohms
R7. R12- 75 ohms
R8-2000 ohms potentiometer
R9- 100 ohms
R10. R11- 270 ohms
R13-3000 ohms

Capacitors

C1-120 pF dipped mica
$\mathrm{C} 2-0.1 \mu \mathrm{~F}$ ceramic disc
$\mathrm{C} 3-.33 \mu \mathrm{~F}$ ceramic disc
C4-37 pF dipped mica
C5-2.2 $\mu \mathrm{F}, 10$ volts, electrolytic
C6- 43 pF dipped mica
$\mathrm{C} 7-\mathrm{C} 9-.01 \mu \mathrm{~F}$ ceramic disc
C10-75 pF dipped mica
C11-15 $\mu \mathrm{F} .10$ volts, electrolytic
$\mathrm{C} 12-1 \mu \mathrm{~F}, 10$ volts, electroytic
C13-20 $\mu \mathrm{F} .20$ volts, electrolytic
IC1-7808 voltage regulator, +8 volts
IC2-LM1889 TV video modulator
IC3- 7908 voltage regulator. -8 volts
D1-HEP2504 varactor diode (Motorola)
D2-1N4005 diode
D3-Zener diode, 6.3 volts
L1-tank coil, $.08 \mu \mathrm{H}$ (3 turns No. 16 wire air-wound $1 / 4^{\prime \prime}$ ID. $3 / 8^{\prime \prime}$ long)
L2-adjustable RF coil. 7-14 $\mu \mathrm{H}$ (J. W. Miller type 9052)
L3- $10 \mu \mathrm{H}$ molded RF choke
nected to the system through appropriate $75-$ ohm splitters and taps.

Power supply

There is little to be said about the system powering that is not obvious in the schematics. The total power drain will be in the $1 / 2$-ampere range at the master supply level of 20 volts. Regulation, where noted, is very important. Pure DC, well filtered, is very important. Protection of the satellite TV receiver, from line glitches is also very important. If you live in an area where you have erratic AC line service, invest a few dollars in some fast-acting devices so that AC line spikes and surges don't eat up your relatively delicate $4-\mathrm{GHz}$ parts. Saving $\$ 10$ on the master power supply may cost you a $\$ 100$ GAAs-FET, so use a good, stiff, regulated supply.

> | SATELLITE TV REPRINTS |
| :--- |
| A booklet containing reprints of |
| all seven articles in the series on |
| Backyard Satellite TV Receivers by |
| Robert B. Cooper, Jr. is available |
| by sending $\$ 5.50$, including first- |
| class postage, to: |
| Satellite TV Reprints |
| Radio-Electronics |
| 45 East 17 th St. |
| New York, NY 10003 |
| New York State residents must include 8* State Sales Tax. |

Satellite television has been called the new frontier of electronics. There is little doubt that a proliferation of communication satellites in the geostationary orbit will change the way we perceive ourselves and our world neighbors in the decade ahead. Heretofore we have been able to keep control of our individual nationalistic goals through a flood of programming created largely by our

LEARNING MORE ABOUT SATELLITE TV

If you are fascinated by the rapid development of satellite television as a worldwide video communications system, some of the following reference materials may be of interest to you:

Satellite Study Package-A thorough study of how the satellite system works. what the individual elements of a successful satellite TV receiving system are, how they work, and what they do. Includes a 72 -page book written by Bob Cooper that explains in lay terms just what the satellite TV revolution is all about. Includes reference section with dozens of other study materials sourced. Also includes 22×35-inch four-color. two-sided wall chart depicting the presently operating international network of geostationary communication satellites, where they are, and what their operational parameters are. Price is $\$ 15$ for first class mail delivery in U.S. and Canada, $\$ 20$ (in U.S. funds) elsewhere from: Satellite Television Technology, P.O. Box 2476, Napa, CA 94558.

Satellite Seminar-The third in a series of Satellite Private Terminal Seminars; scheduled for mid-June in the San Francisco Bay Area of California. Three days of lectures; classroom instruction taught by leading designers of low-cost satellite TV systems. A combination of "how to do it yourself" featuring the latest state-ot-the-art technology and "entering the satellite TV business" sessions. Two early seminars (Oklahoma in August, 1979. Miami, Florida this past February) were total sell outs, so advance registration is a must. For complete details contact: SPTS '80/California, P.O Box G. Arcadia, Oklahoma 73007.

Construction Manuals-A series of three manuals describing the construction of (1) the Swan spherical TVRO multi-satellite antenna, (2)

Coleman TD-2 conversion Satellite TV Terminal and (3) Howard Terminal Receiver. Swan's manual takes you into the satellite TV antenna world for less than $\$ 300$-cost for a very effective 10×10 foot antenna that features the unique ability to receive up to 9 separate satellites with one antenna in a fixed position. The Coleman TD-2 manual covers conversion of surplus (inexpensive) microwave equipment to satellite TV reception, plus illustrates new low-cost microwave technology for home builders. The Howard Terminal Receiver manual describes 24-channel frequency-agile, double conversion receiver, LNA and feed antenna system that can be duplicated for under $\$ 800$. Price per manual is $\$ 30$, all three for $\$ 80$ (U S. funds) from Satellite Television Technology, P.O. Box G. Arcadia. Ok. 73007

Monthly Publication-A "nuts and bolts" monthly publication aimed squarely at explaining the construction of low-cost terminals, satellite operations, and the business of selling and installing private satellite TV terminals. Price for Coop's Satellite Digest is $\$ 50$ per year in U.S. and Canada, $\$ 75$ (in U.S. funds) elsewhere via first class mail from: Coop's Satellite Digest, P.O. Box G. Arcadia, Ok. 73007.

Circuit Boards-A series of circuit boards are available for virtually all portions of the satellite TV receiver described in this series Circuit board IF-70A provides the circuit necessary to create your own $70-\mathrm{MHz}$ IF strip as described here, using the Motorola ART-120 device. Circuit board DEMOD-TVRO provides the layout for the $70-\mathrm{MHz}$-tobaseboard demodulator circuits described in this issue. For price and delivery contact: Robert M. Coleman RFD 3. Box 58-A. Travelers Rest, SC 29690
own countrymen. What we have seen of Brazil, for example, or Zambia, have been the views of our own program producers, writers, and actors.
Satellite television is changing all of that: a trickle now, a flood within the next ten years. International satellites (INTELSAT) already in operation are beaming programs from Brazil, Zambia, and dozens of other nations not only to their own citizens but to 40% of the whole globe at a time. Regional satellites with shaped antenna patterns are spilling the programs from India, for example, throughout Africa and the Middle East. A Russian geostationary satellite system called Statsionar is nearing completion so that by 1981 you may sit in your home-virtually any place in North America-and tune in Moscow directly. Those Statsionar satellites can be expected, like Radio Moscow of shortwave fame, to become instruments of their operators, beaming video propaganda over the entire globe.

Satellite receiving hardware is a new, business still struggling between the first $\$ 50,000$ INTELSAT receivers and what will become ultimately (perhaps soon) $\$ 1,000$ receivers sold through electronic emporiums. By 1990, satellite television will be a household word and $\$ 250$ receiving systems will proliferate into every book corner of the world.

Just as our U.S. television system has shaped and re-shaped the America of the 1940's into the present-day America, so, too, will satellite television shape and re-shape the world of the early 1980's into an entirely different world by the year 2,000 ; some say perhaps ten years sooner than that.

Until October of 1979, for private individuals to own satellite television receivers here in the United States was something of a misdemeanor. It wasn't clearly illegal, but wasn't approved by law either. Since the FCC decided last October that private satellite terminals did not require a federal license, a marked change has begun in the attitude of electronic hardware suppliers throughout the world. Suddenly there is a marketplace for satellite TV gear-a very large, national and even worldwide marketplace. That FCC decision alone will result in dozens of receiving-system packages entering the marketplace in the year ahead.

As an electronics enthusiast you have a leg up on the rest of your countrymen. You have a head start on this new technology and, for a few years at least, your expertise in that area will make you a special person with special knowl-edge-and the opportunity either to enjoy it to the fullest, or cash in on a very attractive business opportunity.

Never before in electronics has the sky been the limit. Never before have we had satellite television available. R-E

2uTMD MTHIS

PORTABLE
 ELECTRONIC ORGAN

> If you don't play a keyboard instrument but would like to learn, you might consider starting out on one of the two simple easy-to-build organs described here. One plays melody; the other also plays chords.

I. QUEEN

MUSIC IS A POPULAR AND SATISFYING HOBby, judging by the continuing sales of hifi equipment, FM receivers, tapes and discs. Listening to music is a pleasure, but playing your own instrument can be doubly satisfying and challenging. After experimenting with several types of audio oscillators and construction plans, I completed a simple organ that measures $14 \times$ $4^{1 / 2} \times 1^{1 / 2}$ inches and plays $2^{1 / 2}$ octaves. It uses a single oscillator and can play any melody. This instrument was so successful that I then constructed a more sophisticated model that can play chords as well as the melody. This one covers 3 octaves. We'll take a look at how to build both models.

Playing an organ

It is amazing how quickly one can learn to play an organ, especially with the help of books written for piano beginners. First, we will give some simple music theory for those readers who are not familiar with it.

The human ear is a sensitive detector of frequency ratios. For example, it easily recognizes a ratio of $2: 1$. The higher frequency is said to be one octave above the other. Since piano and organ keyboards cover an extensive range of frequencies, let's use an octave as a convenient interval of sound. Each octave is divided into 12 equal geometric steps, each step representing a change of about 6\%.

The keyboard is arranged so that a musician can distinguish and identify a particular key out of the 12 in each octave. The keys are arranged in 2 rows:
one with seven white keys, the other with five black keys forming a pair and a trio (See Fig. 1). A letter of the alphabet, from A to G, is assigned to each of the seven white keys. The word "sharp" (written as \#) may be applied to a black key to indicate one step higher. For example, $\mathrm{F} \ddagger$ is one step above F. Sometimes it is more convenient to use the word "flat" (shown as b) to indicate a black key that is one step lower. For example, $\mathrm{B} b$ is one step below B . Obviously, $A \sharp$ and $B b$ refer to the same black key.

FIG. 1-HOW KEYS ARE ARRANGED on the home-built organ. You can salvage individual keys from an old electronic calculator or purchase them from a surplus parts dealer.

An inexpensive keyboard can be constructed with individual calculator keys, approximately $3 / 4$-inch square, that you can take from an old calculator, or purchase from a surplus parts dealer.

Poly Paks for instance has carried switches that are easy to operate, and have low resistance. They come in sets of 4 switches, one of which is a dummy switch without leads. You can remove the inoperative switch and substitute à good one from another set. A set of 4 switches can also be sawed apart to make a group of 2 or 3 , which are needed for the black
keys. Key caps are sold that mate with the key switches.

Radio Shack has sold individual calculator keys, and some stores may still stock them. They are fairly good and can be cemented down on any flat surface.
(Neither of the switches we used are currently available from Poly-Paks or Radio Shack but you are sure to find suitable substitutes if you keep an eye on ads and catalogs from surplus parts dealers. Any SPST pushbutton switch can be used provided it is large enough to be comfortably used in a keyboard. Simply
modify the switch mountings and organ housing to match the switches you use.Editor)

Building the organ

The top and bottom of the organ are made of three-ply wood, held in place by aluminum supports at the front and rear, as shown in Fig. 2. Two L-shaped lengths of aluminum that are held together with machine screws form each U-shaped support. The aluminum comes in 6 -foot lengths and measures 1 inch on each side. It is readily available in hardware stores.

FIG. 2-PUTTING THE ORGAN TOGETHER. Drawing shows mechanical cross-section. Keys are mounted so the black ones are higher and farther back than the white ones; as on a piano keyboard.

TABLE 1

Cः	139	Hz	G	196	Hz
D	147	Hz	Gi	208	Hz
D:	156	Hz	A	220	Hz
E	165	Hz	A:	233	Hz
F	175	Hz	B	247	Hz
F:	185	Hz	C	262	Hz

See Fig. 6 for higher tones.
Frequencies in Hz .

For a 3-octave range, the length of the organ should be about 18 inches.
Note that the top of the organ is narrower than the bottom. This allows you to use a convenient metal base to mount the white keys right in front. The black keys should be slightly behind and somewhat higher than the white ones. Some types of keys have a flat bottom and are made to be cemented onto any flat surface. The Poly Paks key sets came with No. 2-56 screws extending from the bottom. With No. 2-56 hex nuts, I mounted the sets on a metal strip, since the screws are not long enough to pass through the plywood. Then, the metal strip was mounted on the plywood, with the aid of machine screws. Use a strip about three inches long to hold 3 black keys, and another strip about $21 / 4$ inches long for 2 black keys.
Below each key, drill holes for the leads to pass through to the terminals.

Mount the power and the output jacks, as well as the volume control, on the rear metal panel.

To build either organ model, you must have a frequency meter that can measure to about 100 Hz . It is suggested that you construct the simpler organ first to get the feel of playing music. If you are still enthusiastic about playing, then go for the more difficult organ.

Melody organ

In Fig. 3, IC1 is a VCO (Voltage-Controlled Oscillator) whose output frequency varies with the voltage applied to pin 8. The frequency is minimum when the pin is connected directly to the positive (+) terminal of the power supply. As R2 increases, so does the frequency. With a 9 -volt supply, the minimum frequency is about 130 Hz .

Oscillator IC1 generates three output waveforms: a sinewave (pin 2), a squarewave ($\operatorname{pin} 9$) and a triangular wave (pin 3). (The latter waveform is not used.) The squarewave output is sufficient to drive a 45 -ohm speaker directly at J1. The sinewave has a pleasing tone, and can drive a high-impedance earphone at J 2 or drive an external amplifier. An internal amplifier, IC2, is provided however. The output at J 3 is greatly attenuated for a tape-recorder.

*ACTUALLY, R2 IS VABIED IN STEPS AS SHOWN IN FIG. 4 TO CONTROL FREQUENCY
FIG. 3-SIMRLE MONOPHONIC ORGAN plays melodies-one note at a time. Circuit is based on IC1, a voltage-controlled oscillator tuned by the value of resistor R2.

Actually, R2 must be varied in steps for organ music, as shown in Fig. 4. Each resistor is selected to tune to the required frequency when the corresponding switch is closed.

To calibrate the organ, let IC1 warm up and connect a frequency meter at J2. Set R_{A} for the lowest tone to be played when S_{A} is closed. In the instrument I built, it is the key of F (175 Hz). Now, select R_{B} to play the next higher tone when S_{B} is closed, and so on up the scale. Table 1 lists the frequencies at the low end of the musical scale.

Each resistance in the series, $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}$, R_{D} : . . increases gradually over the preceding resistance. The first four resistors I used are 82 ohms each, the next five resistors are 100 ohms each. Then, there are three 120 -ohm resistors, followed by four 150 -ohm resistors, etc. At the upper end of the musical scale, the resistors should be about 300 ohms each. Try for a frequency accuracy of about 0.5% or better. If your resistors are in smaller incre-ments-such as $82,91,100,110$, etc.you can achieve higher accuracy. To reach a desired value, you can connect two resistors in series. Use terminal strips to hold resistors, or solder them directly to each other and to the keys. Hook the ends of resistors to hold them more securely.

Oscillator IC1 is very sensitive to changes in voltage. You must use either a regulated power supply or batteries. If required, R_{A} can be used to retune the organ to some extent. The socket of ICl can easily be mounted on a socket adapter

FIG. 4-HOW KEYS ARE WIRED to switch in different resistors to tune the VCO.

PARTS LIST FOR MELODY ORGAN

Resistors are $1 / 4$ watt, 5%

R1- 500 ohms, potentiometer
R2-calibrating resistors (see text and Fig. 4)
R3-82,000 ohms
R4-R6-4700 ohms
R7-10,000 ohms
R8-390 ohms
R9 - 100,000 ohms
R10-10,000-ohm potentiometer
$\mathrm{C} 1-.022 \mu \mathrm{~F}$, Mylar or low-temperature coefficient
$\mathrm{C} 2-4.7 \mu \mathrm{~F}, 10$ volts, electrolytic
C3- $0.1 \mu \mathrm{~F}$, disc
$\mathrm{C} 4-500 \mu \mathrm{~F}, 10$ volts, electrolytic
IC1-8038, voltage-controlled oscillator
IC2-LM380 audio amplifier
J1-J4-miniature jacks
Misc.-sockets for audio amplifier, keys (12 per octave), plywood, aluminum supports, hardware (see Fig. 2).

Table 2
(Frequency mHz)

	Oscillator											
	1		2		3		4		5		6	
1st octave	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 247 \\ & 262 \end{aligned}$		$\begin{aligned} & 277 \\ & 294 \end{aligned}$	$\begin{aligned} & D= \\ & E \end{aligned}$	$\begin{aligned} & 311 \\ & 330 \end{aligned}$	$\begin{aligned} & F \\ & F= \end{aligned}$	$\begin{aligned} & 349 \\ & 370 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G}: \end{aligned}$	$\begin{aligned} & 392 \\ & 415 \end{aligned}$		$\begin{aligned} & 440 \\ & 466 \end{aligned}$
2nd octave	B	$\begin{aligned} & 494 \\ & 523 \end{aligned}$		$\begin{aligned} & 554 \\ & 588 \end{aligned}$		$\begin{aligned} & 622 \\ & 660 \end{aligned}$	F	$\begin{aligned} & 698 \\ & 740 \end{aligned}$		$\begin{aligned} & 784 \\ & 830 \end{aligned}$		$\begin{aligned} & 880 \\ & 932 \end{aligned}$
3rd octave	B	$\begin{array}{r} 988 \\ 1046 \end{array}$		$\begin{aligned} & 1108 \\ & 1176 \end{aligned}$		$\begin{aligned} & 1244 \\ & 1320 \end{aligned}$		$\begin{aligned} & 1397 \\ & 1480 \end{aligned}$		$\begin{aligned} & 1568 \\ & 1661 \end{aligned}$		$\begin{aligned} & 1760 \\ & 1865 \end{aligned}$
				$\underbrace{1 / 6 ~ I I}_{R_{B}}$								

FIG. 5-ONE OF SIX OSCILLATORS based on a pair of CMOS inverters. The instantaneous frequency is determined by the value of resistor R_{B}.

PARTS LIST FOR MELODY AND CHORD ORGAN

Resistors are $1 / 4$ watt, 5%

$R_{A}-10 \mathrm{~K}$ (6 resistors, 1 for each oscillator)
RB-Calibrating resistors, selected by trial (see Fig. 6 and text)
$\mathrm{R}_{0}-1$ MEG (6 resistors, 1 for each oscillator)
C- $.022 \mu \mathrm{~F}$ Mylar (6 capacitors, 1 for each oscillator)
Misc. - pair of 74C04 CMOS hex inverters (for building 6 oscillators as in Fig. 5); sockets for inverters; terminal strips for resistors; and plywood, aluminum, hardware, keys, as for organ 1.
(Radio Shack 276-024). I used a small piece of PC board to hold the socket of IC2.

Chord and melody organ

This organ is superior in several ways: It not only plays the melody but also plays chords and contains 3 octaves. It is more stable with respect to frequency and voltage. The IC's consume less power and are less expensive. A disadvantage is that the calibrating resistors vary over a wide range of values, and so are more difficult to select. You may need two or three resistors in series to achieve a desired value. An accurate calibration is desirable since errors are more noticeable when you play chords.

To play chords and melody over three octaves, it at first would appear that we need 36 oscillators, and this thought is unbearable! However, we can simplify. Each oscillator is responsible for two adjacent musical tones (called half-steps), as for example A and A:. Half-steps are seldom, if ever, played together. This cuts the required number of oscillators by half. Another simplification is to make each oscillator responsible for its own half-steps in all octaves. You cannot play the same note in more than one octave. is tuned to six notes selected by the key arrangement shown.

FIG. 7-SCHEMATIC DIAGRAM of the simple power amplifier used in the chord organ.

PARTS LIST FOR AMPLIFIER

R11-10,000 ohms, potentiometer, 1/4 watt, 5%
C5, C6-10 $\mu \mathrm{F}, 10$ volts, electrolytic
$\mathrm{C} 7-0.1 \mu \mathrm{~F}, 10$ volts, disc
C8-250 $\mu \mathrm{F}, 10$ volts, electrolytic
J5-miniature jack
IC4-LM386

Table 2 shows how six oscillators cover three octaves.
A typical oscillator is shown in Fig. 5. This oscillator is very stable with respect to voltage and temperature. It uses a pair of CMOS inverters operating at 5 volts. One hex inverter such as the 74 C 04 can be used to make three oscillators. With R_{A} and C fixed, the frequency depends only on R_{B}. A larger R_{B} means a lower frequency. Of course, the voltage applied to the inverter must remain constant. This oscillator can generate only one frequency at a time. For six different frequencies, you must provide six differ-
ent values of R_{B}, each with its own switch (See Fig. 6).

It is a combination of 3 or more simultaneous tones that harmonize and enhance the playing of a melody. The ear is a sensitive frequency ratio detector. The octave $(2: 1)$ was mentioned earlier. If you call any note of an organ, 1 , and count halfsteps upwards, you can show that the pair, 1 and 3, bear the ratio 9:8. Other pairs (and ratios) are: 1 and 4 ($6: 5$), 1 and $5(5: 4), 1$ and $6(4: 3), 1$ and $8(3: 2)$. If the 4 notes; $1,4,6,10$, are played, it is called a "seventh chord" and combines the following pairs: 1 and 4,1 and 6,1 and 3,1 and 5 . The pair, 4 and 6 , plays the same frequency ratio as, 1 and 3 , since both have the same interval of 2 half-steps. A "major chord" is played, 1, 6, 10. Many other chords, and variations of them, are played in organ and piano music.

FIG. 6-THE CHORD ORGAN has six monophonic oscillators to cover three octaves. Each oscillator

Calibration

To calibrate the organ, begin with the oscillator 6. Referring to Table 2, select R1 for 1865 Hz when S1 is closed. Then, select a value for R2 to play 1760 Hz when S 2 is closed. Next, select R3 to play 932 Hz when S3 is closed, and so on. Similarly, proceed with oscillator 5 and the remainder, observing the frequency meter for correct frequencies. Don't try for an exact frequency in each case, but accuracy should be well within 0.5%. You may need two or even three resistors in series to reach the desired value. Here are the approximate values for the resistors shown in Fig. 6:

Resistor R1 is about 10,000 ohms for oscillator 6; about 12,000 ohms for oscillator $5 ; 14,000$ ohms for oscillator 4 , etc. After selecting the value of R1 for any oscillator, the other values in the same series will be approximately as follows:

$$
\begin{aligned}
& \mathrm{R} 2=.06 \mathrm{R} 1 \\
& \mathrm{R} 3=\mathrm{R} 1 \\
& \mathrm{R} 4=2 \mathrm{R} 2 \\
& \mathrm{R} 5=2 \mathrm{R} 3 \\
& \mathrm{R} 6=2 \mathrm{R} 4
\end{aligned}
$$

All the output leads (three leads from each oscillator) are tied together, and the signal is amplified. The simple output stage shown in Fig. 7 can be operated from the same power supply as the organ-either a regulated supply or batteries.

The more complex organ obviously requires more patience and time for proper calibration than does the simpler organ. However, it is well worth the extra effort. R-E

CAR STEREO STANDARDS

Until now, makers of car stereo equipment have not had a set of standards and specifications that were meaningful to the consumer. Recently twenty-two manufacturers agreed on these new standards. Others are expected to follow.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

IF YOU ARE A HIGH-FIDELITY ENTHUSIAST who has considered duplicating the good sound you enjoy at home in your car, truck, or van, you already know that until now there has been virtual chaos in the car stereo marketplace. Twenty watts of power in a car stereo amplifier or complete receiver is, in most instances, not even remotely related to 20 watts of audio power in a home hi-fi system. And a tuner sensitivity of $2.0-\mu \mathrm{V}$ in a car radio (if quoted at all by the manufacturer) has usually meant sensitivity that is only one fourth as good as that of a home tuner boasting the same $2.0-\mu \mathrm{V}$ sensitivity. As for tapeplaying equipment in automobiles, frequency response, if quoted at all, has provided the prospective purchaser with little or no information as to the fidelity of the product being considered for installation in his or her vehicle.

We can now hope that the situation is about to change. As of this writing, 22 leading car stereo equipment manufacturers have agreed to publish specifications and measurements about their products that will be meaningful and helpful to consumers who want good sound on the road. What follows is some of the background that led to the creation of those new standards and a summary of the standard measurements themselves. Particular thanks are due to Marshall Mack Brown of Craig Corporation, who was in charge of the standards meetings that led to the creation of the new standards, along with Jim Twerdahl of Jensen Sound Laboratories and Don Coleman of Clarion Corporation.

It took more than 30 years for the home audio component industry to
reach its present level. But in less than five years annual sales of car stereo equipment have actually equalled or surpassed those of home audio equipment. Unfortunately, the rapid growth of car stereo has resulted in many practices that are contrary to high-fidelity philosophy and concepts. Perhaps the most flagrant abuse has been the artificially inflated "power ratings" of car stereo products. (We all remember that battle in home equipment.)

Back in 1974 the Federal Trade Commission formulated a rule that requires all manufacturers of home audio equipment to state the power output of audio amplifiers on the basis of continuous power, with extremes of frequencies at which the rated power can be delivered for a given level of harmonic distortion and into a specified load impedance. Note, however, that the FTC rule applies only to "home" audio equipment. In 1974, car-stereo equipment sales were not significant, and the FTC did not include that category in its rule. Given that loophole, many car-stereo manufacturers began to exaggerate power ratings, omit references to distortion levels, and so forth and so forth. Serious and conscientious audio-equipment makers were caught up in the specification race as well, and were often forced to publish unrealistic figures for their own products. if only to survive in a highly competitive marketplace.

Discouraged, but by no means defeated, those manufacturers (including many in the U.S., and several importers of equipment from abroad) did not give up. More than a year ago, they formed an Ad Hoc Committee of Car Stereo

Manufacturers and set about to write and publish their own measurement standards. Seventeen well-known manufacturers and importers participated in the deliberations. Their work has now been completed and, in a letter to all car-stereo manufacturers. they have invited all to endorse and use the specifications as presented. By endorsing the new standards, participating companies agree that by June 1, 1980, all of their printed catalogs, specifications sheets, advertisements, and other literature will present product specifications in accordance with the new standards.

Amplifier measurements standards

The new car-stereo standards are divided into three sections. Section I deals with audio power amplifiers (whether supplied as separate components or as part of a car radio) and parallels many of the standards developed for home audio amplifiers by the IHF (Institute of High Fidelity). Six specifications must be presented by a manufacturer in standard format. The format for specifying power output must read: "Power Output: \qquad watts per channel minimum continuous average power into ohms, both channels driven, from Hz to \qquad Hz with no more than \qquad $\%$ total harmonic distortion." While that method of presentation corresponds almost exactly to that required for home-audio equipment. the committee had to address itself to one important additional matter. The nominal 12 -volt supply in most cars may vary from 11 to 16 volts under driving conditions. Figure 1 shows what happens to the power output of a nominally-rated 10 -watt-per-channel amplifier over those
extremes of supply voltage. With only 11 volts of supply voltage, clipping distortion is reached with only 8 watts delivered, while with 16 volts of battery supply, power output increases to more than 12 watts per channel. The new standards call for a standard DC voltage of 14.4 volts to be used when measuring power output of a car amplifier.

FIG. 1-HOW POWER OUTPUT VARIES with supply voltage. Curve A is for 11 -volt supply, B is for 14.4 volts and C for 16.0 volts.

Frequency response for a car amplifier must be stated as follows: Frequency Response: \qquad Hz , to \qquad Hz, \pm \qquad $d B$. Measurements must be made at a 1 watt output level with the amplifier terminated in its rated load impedance. For complete car radios (where the amplifier is inaccessible as a separate entity) the "input" maybe considered to be at the input of the volume control of the receiver.

For signal-to-noise measurements, an " A "-weighting network is to be used (that weighting is also called for in the IHF Amplifier Measurement Standards) and the S / N ratio must be quoted
with respect to 1 -watt output, with an input voltage of 0.5 volts.

Input Sensitivity must be referenced to 1 -watt of power output and should be expressed in volts. Here, an option is provided, wherein an additional sensitivity specification may be given for the input voltage required to produce rated output.

A minimum input-impedance specification is called for in the rew standards, but that spec is applicable to separate component amplifiers only and is intended to establish compatibility of interfacing between models and brands. It would be stated, simply, in ohms.

The last required amplifier specification is Tone Control Action and the format will be: Tone (Equalizer) Action: \pm \qquad $d B$ at \qquad Hz and \qquad Hz . In the case of bass and treble controls, the recommended test frequencies are 100 Hz and $10,000 \mathrm{~Hz}$. For multiband equalizers, the appropriate center fre-

FIG. 2-TONE-CONTROL CURVES can be shown in specs. These curves are typical of those for a five-section equalizer.
quencies should be used in making the measurements. Curves, such as those shown in Fig. 2, may also be presented as an option, but those will most likely be used only for multiband equalizers.

Standards for FM tuners

The second section of the new standards is concerned with FM-tuner specifications, or the tuner section of a complete radio receiver. Nine separate disclosures are called for. The first of those is Monophonic Usable Sensitivity. It is to be stated in dBf . There has been wide variation in practice in measuring and stating the sensitivity of an FM receiver or tuner. Although it has been common practice to state sensitivity either in dB re: $1 \mu \mathrm{~V}$, or directly in volts (or microvolts), the modern practice of stating the sensitivity in terms of relative power level (expressed in dBf) eliminates ambiguity and enables the consumer to make direct comparisons between products. The ambiguities have been particularly prevalent when it comes to car stereo FM receivers, largely because their antenna input impedance is usually 75 -ohms as opposed to the more common 300 -ohm input impedance found on home FM equipment.

Figure 3 shows how $2 \mu \mathrm{~V}$, applied to a 75 -ohm antenna input impedance, is
actually four times as much power delivered to the first stage of the receiver as the same $2 u \mathrm{~V}$ would be if connected to a 300 -ohm impedance. Looking at it another way, a tuner that boasts a $2-\mu \mathrm{V}$

FIG. 2-RECEIVER SENSITIVITY depends on the input impedance of the first RF stage. Equations show relationships.
sensitivity (and fails to mention the fact that this figure applies to 75 -ohm inputs) is really only one fourth as sensitive as one which has a $2-\mu \mathrm{V}$ sensitivity but has a 300 -ohm input.
Another indicator of tuner sensitivity that must be stated by manufacturers adhering to the new Car Stereo Standard is $50-\mathrm{dB}$ Quieting Sensitivity, in mono. A signal-to-noise capability of 50 dB is generally considered to be the least amount of noise (with respect to signal peaks) that can be tolerated in highfidelity equipment, whereas the $30-\mathrm{dB}$ S / N figure, often used by car-stereo equipment manufacturers, really amounts to "barely usable" performance. The signal strength required for producing 50 dB of S / N is also to be quoted in terms of power, or dBf.

Frequency response of the tuner section is to be quoted over the range from 30 Hz to $15,000 \mathrm{~Hz}$ (the frequency limits of FM broadcasting) with a "plus and minus" dB tolerance required in the reporting format.

Such less familiar tuner characteristics as Capture Ratio (the ability of a tuner to zero in on the stronger of two stations broadcasting at the same frequency), Alternate Channel Selectivity (the ability of the tuner to reject signals that are removed in frequency from the desired station frequency by 400 kHz), Image Response Ratio (the ability of the tuner to reject incoming signals that are above 10.7 MHz the local oscillator frequency), and IF Response Ratio (ability of the tuner to reject incoming radio signals that are broadcast at the tuner's $10.7-\mathrm{MHz}$ IF) are all called for in the new standard and are generally to be measured and reported in a manner consistent with the universally used

IHF/IEEE Tuner Measurement Standard which has been formalized since 1975 (IHF-T-200, 1975).

One additional tuner measurement standard called for in the new Car Stereo standards is actually borrowed from the IHF Amplifier Standard, and is called Maximum Output Voltage. It is to be reported in Volts, from Hz to Hz , with \qquad ohms load. That specification is applicable to tuners, decks, and integrated units provided with line output terminals and is intended to establish compatibility of interfacing between models and brands. The minimum recommended load impedance must also be stated.

The third and final section of the new Car Stereo Standards deals with tape players. Since IHF standards for tape decks have not as yet been established, here the committee had to develop its own interim standards. Six required measurements and specifications are called for.

The first of those is playback frequency response. Tape playback frequency response has probably been one of the most flagrantly exaggerated specifications relating to car stereo tape equipment. As illustrated in Fig. 4, the frequency response shown in curve " A " for one typical tape deck and that shown in curve "B" for an inferior product could both be reported as extending from " 30 Hz to $15,000 \mathrm{~Hz}$ "providing that no tolerance in dB accompanies the published statement.

FIG. 4-PLAYBACK FREQUENCY RESPONSE curves for two tape recorders. The one producing curve A is clearly superior.

Clearly, the tape deck represented by the response curve of " B " is able to deliver some output at 30 Hz and some output at $15,000 \mathrm{~Hz}$. That output, however, is some 15 dB lower than the reference level measured at 1 kHz and is therefore all but useless. For that reason, the format for stating tape playback frequency response must be: Frequency Response: \qquad Hz to \qquad

IN-DASH AM/FM/MPX CAR RADIO that includes an 8-track tape player. This model is the RCA AutoSound 12R711.
$\pm d B$. The specification must be referred to 1000 Hz as zero reference level and a ± 3 - dB tolerance is recommended (but not required) in the standard. Units having selectable equalization (e.g. for ferric oxide and chrome or chromeequivalent tapes) should have frequency response stated for all conditions.

Wow-and-flutter performance of the tape equipment is to be measured using an rms-responding meter with weighted response. The meter is read for random 10 -second periods at the beginning, middle, and end of the tape cassette or cartridge, noting the average of the peak readings, but excluding random peaks which do not occur more than twice in any 30 -second period. Wow and flutter is reported as a percentage, followed by the notation "wrms" (weighted rms).

To measure stereo separation of car tape equipment, a reference level of 250 $\mathrm{nWb} /$ meter tone at 1 kHz is used, recorded on one channel. The opposite channel is played back through a nar-row-band filter that includes 1 kHz , and the residual signal is measured. The purpose of the filter is to minimize the masking effect of tape noise, since interchannel leakage (crosstalk) may actually be lower in level than the noise and still be more objectionable.
" A "-weighted signal-to-noise ratio is also to be specified for tape playback devices intended for car use and is to be measured with respect to a $1-\mathrm{kHz}$ recorded signal at a level of $250 \mathrm{nWb} /$ meter, using a 20 Hz to $20,000-\mathrm{Hz}$ bandpass filter.

Finally, the maximum output voltage of the tape deck is to be specified in volts, over the relevant frequency band and with a minimum recommended load also stated. Again, that specification is intended to establish compatibility of interfacing between models and brands, particularly where separate car stereo components (as opposed to all-in-one car stereo units) are used.

While there are certainly many more specifications which might be measured and published for mobile audio products in those three categories of amplifiers, tuner/receivers, and tape players (or combinations of them), it is significant that a group of audio-equipment manufacturers were able to get together, without any government prompting or pressure, to produce meaningful measurement standards. The result of their efforts can only benefit the audio consumer who wishes to have good highfidelity sound while traveling in a vehicle.

The proposed standards have been printed, and readers wanting to learn more about them may write to Marshall Mack Brown, Chairman of the Ad Hoc Standards Committee of Car Stereo Manufacturers, at Craig Corporation, 921 West Artesia Blvd., Compton, California 90220.

R-E

CIRCLE 106 ON FREE INFORMATION CARD

Nikko Audio EQ-11 Graphic Equalizer

GRAPHIC EQUALIZERS HAVE BECOME ONE OF the most popular add-on products in a highfidelity stereo system. By dividing the audiofrequency spectrum into several segments, a graphic equalizer permits the user to tailor tonal response of the entire system more precisely than would be possible using ordinary bass and treble controls or even bass, midrange and treble controls. Until now, most of the equalizers we have seen featured either five bands or ten bands per channel, with a few offering even more frequency segmentation.

Now Nikko has come up with a graphic equalizer, model EQ-II shown in Fig. 1, that offers six bands of frequency-per-channel, thereby providing a bit more flexibility than that offered by five-band units without increasing the retail price to that of most tenband units.

The all-black front panel of the EQ-II features a POWER on/off switch at the left-hand side, above which is a small, red indicator light that turns on when power is applied to the unit. Nearby, along the lower edge of the panel, are

MANUFACTURER'S PUBLISHED SPECIFICATIONS:
Control Frequencies: $40 \mathrm{~Hz}, 125 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1.25 \mathrm{kHz}, 4 \mathrm{kHz}, 12.5 \mathrm{kHz}$. Control Range: $\pm 12 \mathrm{~dB}$ at center frequencies. Rated Output Level: 1.0 volt. Maximum Output Level: 4.0 volts. Total Harmonic Distortion: 0.01%. Signal-to-Noise Ratio: IHF "A"Weighted; 100 dB . Frequency Response: 10 Hz to $30 \mathrm{kHz}, \pm 1.0 \mathrm{~dB}$. Input Impedance: 80 K ohms. Power Requirement: 120 volts 60 Hz , 14 Watts . Dimensions: $161 / 2 \mathrm{~W} \times 35 / 8$ $H \times 13$-inches D. Net Weight: 10.8 lbs. Suggested Retail Price: $\$ 200.00$

NIKKO AUDIO EQ-II
 GRAPHIC EQUALIZER

EXCELLENT
 Copyright ${ }^{\circ}$ Gernsback Publications inc., 1979

a pair of pushbutton switches. One of these is used to bypass the equalizer when its functions are not required, or for making instant audible comparisons between equalized and unequalized sound. The other switch introduces a tapemonitor circuit that can be used to connect a tape deck, since the tape out/tape in jacks on any associated receiver or amplifier will have been used up by installation of the equalizer.

The wiring of the tape-monitor circuit is such that only preequalized signals can be fed to the line inputs of the connected tape deck. In other words, you cannot use the $E Q-I I$ to equalize signals being recorded; only to equalize signals being played back via the tape deck or your other program sources. Above the equalization in/out switch is a small green light that turns on when the EQ-II is "in circuit".

Nikko has chosen to separate the left and right channel slider controls that occupy the rest of the front panel into two separate groups. The alternative approach is to position left and right sliders that have the same center
frequencies in adjacent pairs. Each approach, of course, has its advantages and disadvantages. With all the controls of one channel grouped together, if the user finds that both channels require the same degree of equalization the arrangement on the EQ-II requires that each channel be adjusted separately. When similar center frequencies are paired together, (as on some other equalizers we have tested), the user can adjust left and right sliders with a single finger motion. On the other hand, in most practical situations, with speaker systems placed at different positions in the listening room, in non-identical environments, the likelihood is that the left-channel equalization requirements will differ from those of the right channel, and individual adjustment would be required in any case.

The center frequencies chosen by Nikko for this six-band equalizer are $40 \mathrm{~Hz}, 125 \mathrm{~Hz}, 400$ $\mathrm{Hz}, 1.25 \mathrm{kHz}, 4 \mathrm{kHz}$ and 12.5 kHz . Spacing is therefore something more than one octave and less than two octaves. The slider controls used to adjust response at each of these center frequencies have well defined detents with approximately a $2-\mathrm{dB}$ step per detent. Sliders are calibrated from 0 (center position) to 10 in both the boost and cut directions of the slider. Those calibration points have no direct correlation to dB of boost or cut, however, since maximum boost or cut is 12 dB .
The rear panel of the $E Q-I I$, shown in Fig. 2, is equipped with a pair of INPUT jacks at the left, a pair of output jacks at the center and the previously mentioned TAPE-OUT and TAPEIN jacks in between. An unswitched AC convenience outlet, rated at 200 watts, is located at the extreme right of the rear panel above the power cord. There are no externally-replaceable fuses on the rear panel.

Figure 3 shows the inside of the chassis of the unit. Note that the single circuit board at the right rear contains no inductors, as such. Instead, gyrator circuits using op-amps with feedback networks are used to create the necessary individual filter circuits required. The entire circuit is well shielded from any induced hum via the front panel and from the small power transformer mounted at the extreme left of the chassis. That careful layout accounts in part for the excellent signal-to-noise ratio that we found. Figure 4 shows how to connect the EQ-11 into a hi-fi system.

Lab measurements

Table I summarizes the laboratory measurements made on our sample unit. The exceedingly low distortion levels, measured at midfrequencies as well as at the audio frequency

extremes, were measured with an input signal level of 1.0 volt, which corresponds to the rated output level of the unit (the $E Q-I I$ has 0 dB or

RADIO ELECTRONICS PRODUCT TEST REPORT TABLE 1

Manufacturer: Nikko
Model: EQ-II Equalizer

GRAPHIC EQUALIZER PERFORMANCE MEASUREMENTS

Specification	R-E Measurement	R-E Evaluation
Control range ($\pm \mathrm{dB}$)	12	Very Good
Center frequencies (Hz)	40,125, 1.25K, 4K, 12.5K	Good
Maximum output level (V)	4.5	Very Good
Harmonic distortion, 1 kHz (\%)	0.003	Excellent
Harmonic distortion, 20 Hz (\%)	0.008	Excellent
Harmonic distortion, 20 kHz (\%)	0.005	Excellent
S/N ratio, " A "-weighted (dB)	99	Very Good
Frequency response, $\mathrm{Hz}-\mathrm{kHz}, \pm 1 \mathrm{~dB}$	10-25	Very Good
MATCHING CHARACTERISTICS		
Rated output (V)	1.0	
Input impedance (ohms)	80 K	
Power consumption (W)	12	

RADIO-ELECTRONICS PRODUCT TEST REPORT

TABLE 2

Manufacturer: Nikko Audio
Model: EQ-II Equalizer

OVERALL PRODUCT ANALYSIS

Retail price	$\$ 200.00$
Price category	Medium
Price/performance ratio	Very good
Styling and appearance	Excellent
Sound quality	Excellent
Mechanical performance	Very good

Comments: Many audio enthusiasts find that a 10-band (octave-by-octave) graphic equalizer is a bit too much to cope with while some of the low-cost 5-band equalizers don't offer as much control as they feel they need. Nikko Audio has apparently tried to solve that problem by coming up with a six-band graphic equalizer that provides just a bit more control flexibility than do the five-band models available. By resorting to gyrator circuitry, Nikko has managed to keep hum and noise levels as low as those found in much more expensive equalizers; distortion contributed by the device is almost at the vanishing level. The multi-detented settings of each slider control make preferred settings easily repeatable. The incorporation of a tape-monitor circuit means that those owning a receiver with only one tape circuit will not lose that function when connecting the EQ-II. It would have been nice (and not expensive) if Nikko had enabled the user to equalize signals ahead of the tape out circuit instead of only during playback. An overall level control would also have been useful, especially when extreme settings of the sliders are called for. But, all in all, the EQ-II offers good basic equalization facilities at a moderate price.
unity gain, as an equalizer should). Even as one approaches maximum output level, however, distortion remains almost as low until output exceeds 4.0 volts.

Figure 5 shows the response of the $E Q-I I$ with each of its frequency levers alternately moved to the maximum boost and cut posi-
tions. Vertical sensitivity for the presentation was 10 dB -per-division while frequency, plotted from left to right, extended from 20 Hz to 20 kHz , logarithmically. Thus, spacings between center frequencies of the various bands are almost precisely equal, between one and two octaves apart.
Figure 6 presents a sequential plot of one of the slider controls (the one having a center frequency of 400 Hz) for each of its eleven detented steps and while the boost and cut for each step, they are very nearly equal.

Summary

At its price, the Nikko $E Q-I I$ offers a good deal of tonal control flexibility. In listening tests, the unit introduced no noticeable sound coloration when the controls were set to their mid-positions and the EQ light was on. Neither was their any noticeable increase in distortion or noise level when the equalizer was switched into the rest of our test stereo component system. More detailed summary comments, together with our overall product evaluation, will be found in Table II.

R-E

3½Digit DMM

Want to design and build your own DMM? If so, this developmental prototype is a good place to start. You can add features and select an enclosure and layout to meet your needs.

CARSON CHEN*

here's how an accurate, inexpensive $31 / 2$ digit DMM can be built. The DMM is designed around a single $31 / 2$ digit DVM IC that performs the analog-todigital conversion function. The specifications of the DMM are shown in Table 1.

Referring to the schematic in Fig. 1, (see page 62) the basic building block of the multimeter is the ADD3501 analog-to-digital converter using a pulse-modulation technique. A 2 -volt reference voltage tapped off the LM336 2.5 -volt precision reference diode allows for a 1 mV resolution. Additional ADD3501 support circuitry consists of an NSB5388 LED display, a DS75492 digit driver, an RA08 resistor array and an LM340 to regulate the V_{CC} supply voltage.
DC voltage measurement: Depending upon the range selected, the positive or negative DC voltage to be measured is applied to the + and - meter probes and, where applicable, attenuated so that the maximum voltage per range equates to 2 volts full-scale and applied across the ADD3501 $\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }}-$ pins (pins 13 and 12 respectively). The ADD3501 then performs a pulse-modulation analog-todigital conversion and digitally displays the numerical equivalent of the analog input voltage.
DC current measurement: In the DC current mode, the meter probes are placed in series with the current to be measured. On any range, the DMM places a known resistance in series with the current to develop a 2 -volt full-scale

[^1]voltage drop. (This voltage drop may be reduced to 200 mV ; refer to the last section of this article). The equivalent drop across the current measuring resistor is then converted and displayed by the ADD3501.

Resistance Measurement: As in all multimeters, a current source develops a voltage drop across the unknown resistor being measured. In this case the resistor to be measured is placed across the + and - meter probes and, depending upon the range selected, a constant current is forced through the resistor developing, at maximum, 2 volts full-scale. This voltage is applied to the $\mathrm{V}_{\mathrm{IN}}+$ and $\mathrm{V}_{\mathrm{IN}}-$ pins of the ADD3501 and converted to its proper digital equivalent displayed as ohms. The current source is designed around two of the op-amps in the LM346 (IC2-a and IC2-b) and transistors Q1 and Q2.

Isolating the current source and analyzing the circuit in Fig. 2, we see that resistor R_{X} sets the desired current for a chosen resistance measurement range. It is essential to note that varying resistor

values placed at R_{x} must not alter the constant current through R_{X}. If this occurs, erroneous resistance readings will be displayed. To eliminate any non-constant current conditions, op-amp IC2-b and transistor Q2 function as follows:

To establish a constant-current source, a constant voltage drop must be maintained across load resistor, R_{L}. The closed-loop operation of IC2-b trys to maintain a zero differential input voltage. With V_{A} applied to the non-inverting input, point A is forced to $V_{A}+V_{B E}$ so that the voltage of point B would equal V_{A}. Thus a constant voltage potential is maintained across R_{L}. With V_{A} constant at point B, the current source remains constant, and varying R_{X} has no effect on the current source, provided that $\mathrm{R}_{\mathrm{x}} \times$ $I_{\text {Source }}$ is not greater than $V_{A}-V_{B E}$, so that transistor Q2 is saturated. This nonlinear condition however will not be noticed since $\mathrm{R}_{\mathrm{X}} \times \mathrm{I}_{\text {SOURCE }} \geq 2 \mathrm{~V}$ will force the ADD3501 to display + ofl. (See Fig. 3.)

A change in the V_{CC} supply voltage is

TABLE 1-SPECIFICATIONS

DC Volts: Accuracy better than $\pm 1 \%$
Ranges: 2 volts, 20 volts, 200 volts, 2 kV .
Input impedance: greater than 10 megohms on 2-volt range; 10 megohms on 20 -volt to $2-\mathrm{kV}$ ranges.
AC RMS Volts: Accuracy better than $\pm 1 \%$
Ranges: 2 volts, 20 volts, 200 volts, 2 kV
(40 Hz to 8 kHz , sinewave)
DC Amps: Accuracy better than $\pm 1 \%$
Ranges: $200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 2 \mathrm{amps}$
AC RMS Amps: Accuracy better than $\pm 1 \%$
Ranges: $20 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 2 \mathrm{amps}$
Ohms: Accuracy better than $\pm 1 \%$
Ranges: 200, 2000, 20,000, 200,000 ohms, 2 megohms

BATTERY TEST

FIG. 1-SCHEMATIC of the low-cost digital multimeter. The component-count is low for an instru-
ment of its versatility.

PARTS LIST

Resistors $1 / 4$ watt, 5% unless otherwise specified
R1-90 megohms, 0.1\%
R2-9 megohms, 0.1 $\%$
R3 - 900,000 ohms, 0.1%
R4 - 90,000 ohms, 0.1%
R5-10,000 ohms, 0.1\%
R6, R7-1 megohms
R8-909,000 ohms, 1\%
R9 - 1.0 ohms, 1%
R10- 10 ohms, 1%
R11-100 ohms, 1%
R12- 1000 ohms, 1%
R13-10,000 ohms, 1%
R14- 1.96 megohm, 1%
R15, 196,000 ohms, 1%
R16-19,600 ohms, 1%
R17-1960 ohms, 1\%
R18-196 ohms, 1\%
R19, R20, R38-10,000 ohms
R21-10,000 ohms, 1\%
R22, R23, R24-20,000 ohms, 1%
R25-20,000 ohms
R26-22 megohms,
R27, R37-100,000 ohms
R28-820 ohms
R29-232 ohms, 1\%
R30-1000 ohms
R31-150,000 ohms
R32-200 ohms
R33 - 7500 ohms
R34-330 ohms
R35-120 ohms
R36-82 ohms
R39-10,000 Ohms, 10-turn trimmer pot R40, R44-50,000 Ohms, 10-turn trimmer pot
R41-20,000 ohms, 10-turn trimmer pot R42-25,000 ohms, 10-turn trimmer pot R43-30,000 ohms, 10-turn trimmer pot R45-R52-RA08-82 resistor array
(National) or eight - 82 ohms, $1 / 4$ watt

Capacitors

C1, C2, C3-47 $\mu \mathrm{F}, 15$ volts, electrolytic C4-1 $\mu \mathrm{F}$
C5, C6, C6-10 $\mu \mathrm{f}, 15$ volts, electrolytic C8-5 $\mu \mathrm{F}, 15$ volts, electrolytic
C9-250 pF
C10, C11- $0.47 \mu \mathrm{~F}$
C12-0.1 $\mu \mathrm{F}$

Semiconductors

D1-D6-1N914
Q1-2N3904
Q2-2N3905
DIS1-NSB5388 3½-digit LED display
IC1-LM346 quad op-amp
IC2-LM348 quad op-amp
IC3-LM340 5-volt regulator
IC4 -DS75492 (National) MOS to LED hex-digit driver
IC5-ADD3501 3½-digit digital voltmeter IC6-LM336 2.5-volt Zener reference source
S1-rotary switch, 5 circuits, 5 positions
S2-rotary switch, 6 circuits, 5 positions
S3-SPST miniature slide switch
Miscellaneous hardware including case, stand-off bushings, hookup wire, IC sockets, etc.
another condition that may affect the constant-current source and must be corrected for within the circuit. A constantcurrent sink is established when amplifier IC2-a forces point C to the non-inverting input voltage $\mathrm{V}_{\text {ref }}$. With $\mathrm{V}_{\text {ref }}$ held constant

FIG. 2-FUNCTIONAL DIAGRAM of the constant-current source. The op-amps are part of a quad device.

FIG. 3-THIS DISPLAY on the readout can not be mistaken for anything other than overflow.
at point C, the current through R25 is roughly equal to the current through R42. (See equation 1.) This allows V_{A} to vary directly proportional to any fluctuations in supply voltage.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{CC}}-\left[\left(\mathrm{V}_{\text {ref }} / \mathrm{R} 42\right) \alpha\right] \mathrm{R} 25 \tag{1}
\end{equation*}
$$

If V_{cc} drops by $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{A}}$ drops by V_{x} and sustains the desired voltage across R_{L}. Reference voltage $\mathrm{V}_{\text {ref }}$ is taken from the LM336 and remains constant throughout the ADD3501 supply voltage range. Note that the base of Q2 must be left connect-
ed to IC2-b during the AC current or voltage measurements. In these modes the R_{X} terminals (and the collec-tor-ground) are open circuited. This allows the Q2 emitterbase junction to act as a forward-biased diode pulling the V supply to ground through IC2-b. This problem is eliminated by the opening switch (S2-e) connecting Q2 to IC2-b.
AC voltage measurement: The AC voltage is measured using the AC-to-DC converter shown in Fig. 4. The voltage attenuator has a source impedence on any range of 1 megohm. Amplifier IC1-a is connected as a voltage-follower lowering the source impedence driving IC1-b to a few hundred ohms. The small DC offset voltage is decoupled through C 1 .
The AC/DC converter, IC1-b and IC1-c, can best be understood by following the signal path for negative and then for positive inputs. For negative signals, the output of IC1-b is clamped to +0.7 volt by diode D1 and disconnected from the summing point of IC1-c by D2. Amplifier IC1-c then functions as a simple unity-gain inverter with input resistor R23 and feedback resistor R43 giving a positive-going output.

For positive inputs, IC1-b operates as a normal amplifier connected to the summing point of IC1-c through resistor R21. Amplifier IC1-b then acts as a simple unity gain inverter with input resistor R22 and feedback resistor R24. The gain accuracy of IC1-b is not affected by diode D2 since it is inside the feedback loop. Positive current enters the summing point of IC1-c through R23 and negative current is drawn from the summing point through R21. Since the voltage across R23 and R21 are equal and

FIG. 4-THE AC/DC CONVERTER is designed around three op-amps and a few other components.

FIG. 5-INTERIOR VIEW of the DMM. Perforated board is used for the chassis. Wiring is point-to-point. Precision resistors in the voltage divider, current shunts and ohmmeter circuits are plugged into IC sockets.
opposite, and R21 is one-half the value of R23, the net input current at the summing point is equal to and opposite from the current through R23. Thus amplifier IC1-c operates as a summing inverter with unity gain, again giving a positive output. The circuit then becomes an averaging filter with C6 connected across R43. Trimmer resistor R44 is used to minimize output errors due to input offset currents.

AC current measurement: To measure AC current, the meter circuit is configured as in the DC current measurement setup. Again, IC1-a through IC1-c (see Fig. 4) performs the $A C$ to $D C$ conversion with the final $D C$ voltage at point A being fed to and converted by the ADD3501.

Construction

The digital multimeter described here was developed as a prototype to prove the suitability of the ADD3501 for use in an inexpensive electronic test instrument. The circuit is simple and the componentcount relatively low so point-to-point wiring or wirewrap on perforated board can be used. An interior view is in Fig. 5. Note that all V_{Cc} connections should be made to a single point and all grounds should be made to a single ground point. Be sure to connect an $0.1-\mu \mathrm{F}$ capacitor from each V_{cc} IC terminal to ground.

It cannot be overly stressed as to the importance of maintaining single-point ground connections for the amplifiers. Ground-loop resistances coupled with the offset currents and AC response can play absolute havoc with system linearity, gain and display flicker. Similarly, flickering occurs if precautions are not taken when considering the layout of analog, high-
switching-current and digital groundloop paths of the ADD3501.

Calibration

Calibration of the digital multimeter is performed as follows:

1. Adjust R40 until the cathode of the precision zener reference diode (LM336) equals 2.49 -volts. This adjusts the diode's temperature coefficient.
2. Set the meter to measure 2 volts DC. Short the + and - probe inputs of the meter and adjust R45 until the display reads 0000 .
3. Now, apply 1.995 volts DC across the + and - probe inputs and adjust R41 until the display reads 1.995.
4. Set up the meter for resistance on the 2 -megohm range. Select a precision resistor whose value is a little lower than 2 megohms and adjust R42 until the appropriate value is displayed.
5. Apply a known 1.995 -volt RMS sinewave signal to the meter and adjust R43 until the display reads the same.
(Calibrating the DMM to three decimal places will be difficult for many readers. You can do it if you have access to a $4^{1 / 2}$ - digit DMM. A friendly TV service technician or a lab technician in a local electronics plant may help you with the calibration. If, at first, you don't need the accuracy offered by this instrument, there are a couple of schemes that you can use to get all the precision you'll need for ordinary servicing and experiments.

Calibration on the DC range is relatively simple. A rough calibration can be made using a fresh flashlight cell that will give 1.54 to 1.55 volts. For a more precise reference, you can use a 1.35 -volt mercury cell. Most of these supply 1.354 volts
$\pm 2 \mathrm{mV}$. Note that 1.4 volt mercury cells are available but they are not suitable for use as voltage standards. Among the several 1.35 -volt mercury cells that are available are Mallory RM12R, Burgess HG12R and Eveready E12N. The "N" and " R " suffixes indicate types suitable for instrument voltage references and high-temperature applications. If the type 12 is not available, try to get a 42 , 400,401 or 625 with the " N " or "R" suffix.
(If your scope has $\mathrm{AC} / \mathrm{DC}$ coupling you can use it and your DC reference to arrive at a reasonably accurate AC reference source. Connect the DC reference cell across the vertical input and adjust the vertical attenuator for deflection to a convenient reference point above the zero reference line. Without changing the attenuator setting, switch the scope to AC and connect an adjustable AC source to the scope input. Adjust the applied voltage so its uppermost peak rests on the same reference line as the DC voltage.
(The effective or RMS value of the AC voltage equals 0.707 times the peak value indicated on the scope. For example, when a 1.35 -volt cell is the DC reference, the equivalent RMS voltage giving the same deflection is 1.35×0.707 or 0.954 volt.-Editor).

Final note

The digital multimeter described here was specifically developed with accuracy and minimal cost in mind. For a more elaborate multimeter, improvements to the basic circuit of Fig. 1 can be made in the following areas.

1. Increase the volts mode to include a 200 mV full-scale range. (Refer to the ADD3501 data sheet).
2. Decrease the full-scale current measurement load voltage from 2 volts to 200 mV .
3. Provide true-RMS mesurement capability.
The first two categories may be satisfied by dividing down the ADD3501 feedback loop by a ratio of 10 to 1 , thus scaling down the full-scale 2 -volt input requirement to 200 millivolts. This not only allows 200 mV impressed across the $\mathrm{V}_{\mathrm{IN}}+$ and $\mathrm{V}_{\mathrm{IN}}-$ inputs to display a fullscale reading but also implies that the maximum voltage dropped across the cur-rent-measuring resistance is also 200 millivolts.

Note, of course, that the values of the current-measurement resistor array must be scaled down by a factor of 10 to 1 . Also note that a 200 mV full-scale input implies a resolution of $100 \mu \mathrm{~V}$. At these low input levels, offset currents may effect linearity and gain of the AC/DC converter and some clever circuitry may be required to eliminate such problems. A true RMS meter can be made by replacing the AC to DC converter with LH0091, a true RMS-to-DC converter, and appropriate interface circuitry. R-E

TROUBLESHOOTING BETA TRANSPORT MECHANISMS

Threading video tape from a cassette into the transport mechanism blends a mixture of mechanics and electronics that seems simple-after you understand it.

FOREST BELT

IN MOST OF TODAY'S BETA-FORMAT home video recorders, one direct-current (DC) motor drives the entire tapeloading mechanism. (Sony, Toshiba and Zenith are the main Beta-system brands.) In one exception, a drive belt supplies the force from a main AC motor. Yet the mechanics of actual tape-threading remain the same whatever the driving force.

The DC motor drives a large threading ring. Running counterclockwise, the ring draws the video tape out of the cassette and wraps it in a giant semicircle around the video-head drum and assorted guides and sensors.

The DC motor reverses, too. Running clockwise, the threading ring unwraps the tape; the takeup reel in the cassette winds the tape slack back into the cassette.

Of course, that explanation oversimplifies. Yet, it describes the basic mechanical operation by which video tape from a Beta-format cassette is loaded or threaded into the recording/playing mechanism, and then withdrawn (unloaded or unthreaded). You can build from this fundamental view to a more detailed understanding of how a VCR works. The loading/unloading operation involves both mechanics and electronics. For best comprehension, the mechanics of a VCR may be the place for you to begin your study. That's where you generally should begin troubleshooting any Beta machine's loading/unloading faults.

Threading-ring drive

You can follow the action of tapethreading best with a video cassette recorder in front of you. To watch all that
happen, you need to remove the cover from the machine-an easy matter.

While you can derive a fair notion of the actions from the photo in this article, the better your familiarity with how specific operations proceed, the easier you can spot malfunctions.

To load a Beta cassette onto the machine, first depress the EJECT button. That raises a compartment called the cassette-lift assembly. Insert the video cassette, and then press the cassette compartment down until it clicks. The cassette fits down over the front edge

THREADING THE TAPE begins when the threading ring revolves counter clockwise.

AS THE THREADING RING revolves, the lead guide post catches the tape.
of the threading ring in such a way that a lead or No. 1 guidepost fits up behind the tape itself, more or less inside the cassette. Simultaneously, the downward motion lifts a cover on the front of the cassette, exposing the tape.
Proper switching takes place automatically when you push the cassettelift compartment down until it latches. The cassette encounters a cassette-in switch. A DC motor (located inside the main chassis in the rear left corner) turns on. The motor's pulley-belt drives a worm gear that rotates a threading-

THE THREADING RING continues to revolve wrapping the tape closely around the face of the video-head drum.

A STOPPER TAB ends threading ring travel when threading is completed.
drive shaft. On its upper end, the shaft has another gear that engages the largediameter threading ring.

The threading ring revolves counterclockwise (as you look down at it). The lead guidepost encounters the tape as the rotation brings the post outward and then begins pulling the tape out of the cassette.

The tape coming out of the cassette travels around the video-head drum. At first, the tape being pulled out by the lead post is doubled. But, at intervals, three additional guideposts on the circumference of the threading ring enter the tape loop. These posts hold the outer side of the tape loop away from the video-head drum. The inner side of the loop, however, wraps very closely around the face of the video-head drum. Behind the drum, two fixed guideposts also shape the outside dimensions of the tape loop.

Meanwhile, on the left-hand side of the cassette, a lever-with a guidepost that is also inside the cassette similar to the lead guidepost-has filled out a tapetension arm. That post has also drawn some tape from the supply reel of the cassette.

Near the end of the threading-ring travel, a cam-follower lever moves the tape-tension arm solidly outward. That completes the tape-wrapping procedure around the video-head drum. As shown in the photo, this action also positions the tape so that it can pass the audiocontrol head properly.

A stopper tab ends the threading-ring travel. Microswitches open the circuit
to the DC threading motor. Toggle levers hold the ring firmly against the stopper. The tape is now in position for any of the RUN modes: PLAY. RECORD. FAST FORWARD, or REWIND.

Unthreading or unloading

When the EJECT button is down, the voltage at the DC motor reverses and starts the threading ring revolving clockwise. A few degrees of rotation toggles the cam-follower lever and loosens the tape-tension arm.
Tape could suddenly go siack and create a "spill," but a lever lifts the brake from the takeup-reel turntable. The direction of the reel rotation winds up any slack in the tape as it occurs.

Continuing clockwise, the threading ring unwraps the tape from the videohead drum-exactly the reverse of how it operates in threading the machine. Finally, at the end of the unthreading operation, the cassette-lift mechanism raises the compartment. The cover at the front of the cassette closes, and the cassette can be removed.

Tape-loading electronics

Unless you know what happens electronically during the threading sequence, you cannot always determine for certain whether a defect is a mechanical or an electronic fault. Once you are familiar with both sides, troubleshooting can proceed directly.

Several electronic functions must be taken into account during tape loading. Many are safety interlocks that prevent damage to the machine. The basic

FIG. 1-BASIC THREADING CIRCUIT contains many safety interlocks that prevent damage to the machine during the tape loading process. A microswitch detects when the cassette is in place.
threading circuits are shown in Fig. 1.
A CASSETTE-IN microswitch operates from a plunger that is activated when the cassette is in the lift compartment and the assembly has been pushed down to latch it. The switch applies 12 volts of regulated DC to the loadingcircuit board.

A LOADING-STOP microswitch connects as an interlock between pin 2 of connector CN4001 and pin 3 of CN4002. This switch is located beside the threading ring. It stays closed at all times except when the threading ring reaches its limit (when the tape is loaded). Thus, at the start of tape loading, the switch carries 12 volts from the CASSETTE-IN switch to the threading-control circuits.
With both microswitches closed, 12 volts goes to a standby-lamp stage (the circuits are not shown in Fig. 1). An illuminated standby lamp warns the operator to wait until loading is finished before pressing one of the RUN-mode buttons. Some Beta-format machines omit this warning light.
Forward-biased diode D4016 carries 12 volts DC to a charge-up circuit that consists of R4011, R4055 and C4009. This capacitor holds a 12 -volt charge even after the voltage is removed; which is what happens when the thread-ing-stop switch opens. The purpose is to keep the threading motor turning an extra moment or so until the threading ring reaches its mechanical-stop pin. That assures complete loading.

Diode D4015, which is also forwardbiased, places 12 volts on pin 19 of the threading-logic IC. (In digital logic, that constitutes a logic high on pin 19.) As long as the other input of gate AND2 sees a logic high, the output is a logic high. Two logic-high inputs to gate AND-3 gives another logic-high output, that inverts in the gate immediately following it.

The logic low from IC pin 21 cuts off transistor Q 4003 , placing a logic high on the base of Q4010. Because it is an emitter-follower (noninverting), Q4010 delivers a logic high through switch segment S4004-1 to one side of the DC threading motor. Switch-segment S4004-2 grounds the other side of the motor. The threading motor runs.

Now, let's review some of the ramifications of various circuit elements you have encountered along the way. Some of them can, for one reason or another, inhibit the operation of the threading motor.

First, let's start with gate AND-2. To deliver a logic-high output, both gate inputs must be high. However, if certain things malfunction elsewhere in the machine, an automatic-stop system switches a logic-low signal onto this line. A logic-low signal would inhibit gate AND-2, and this would force a logic high at IC pin 21, and, ultimately, a logic high at IC pin 21, and, ultimately,
a logic low at the emitter of Q4010. Thus, the threading motor would stop.

Let's look at the delay-logic circuit block shown in Fig. 1. The delay circuit acts as a switch that keeps IC pin 20 normally grounded. This in turn sends a logic low to the delay gate and a normal logic high to gate AND-3.

However, when gate AND-2 applies a logic high to the delay input, it effectively lifts the ground from IC pin 20. Capacitor C4013 begins charging through R4017. If the threading finishes in the usual two or three seconds, the threading-stop switch opens, the output of gate AND-2 goes low and IC pin 20 reverts to ground or zero.

But if something goes wrong and threading has not been completed in ten seconds, capacitor C4013 attains nearly full charge. The delay gate inverts the developed logic-high output from the delay amplifier, sending a logic-low input signal to gate AND-3. A logichigh output thus appears on IC pin 21, which shuts off the threading motor, thus averting excessive tape stress or breakage.

Eject or unload

Eject mode is another term for unthreading the tape, returning it to the cassette and raising the cassette-lift mechanism to remove the cassette.

Basically, unthreading can proceed whenever the EJECT button is depressed. Figure I shows that Main Eject switch S4004 has four segments. Switch segments S4004-1 and S4004-2 reverse the DC voltage that is applied to the threading motor from Q4010. The motor runs in the opposite direction, and the gearing system now drives the threading ring back clockwise toward the tape-unloaded position.

FIG. 2-THREADING LOGIC IC uses $30-\mathrm{Hz}$ signal to verify that the video head drum is rotating.

Switch segment S4004-3 opens the voltage path from switches S6505 and S6506. Switch segment S4004-4 moves to its Eject position and discharges any voltage stored across capacitor C4009.

The turn-on logic for unthreading

FIG. 3-BRAKE RELEASE ELECTRONICS control the brakes on both the take-up and supply reels. Brakes are released when solenoid is energized.
comes from a safety system. It is important that the takeup reel is operational when the threading ring begins unwinding tape from around the videohead drum. If not, the tape could wad up in the mechanism. Slack tape must be drawn back quickly into the cassette. The takeup turntable depends on the AC motor for its drive, so threading should not begin unless the AC motor is definitely running.

The turn-on voltage (logic) for the unthreading operation comes from this relation-sensing system. The headswitching pulse signal depends on the rotation of the head drum, which is beltdriven by the AC motor. Capacitor C4024, shown in Fig. 1, couples a sample of the switching signal into the threading-logic system.

Doubler diodes D4012 and D4014 rectify the signal. Positive DC develops across C4008, forward-biases D4011, and feeds a logic high to pin 19 of the IC. You have already traced through the remainder of the logic that activates the threading motor. Remember, though, that the motor is now turning backwards to unthread the tape.

One type of VCR uses circuits inside the threading-logic IC to verify the video-head drum rotation. See Fig. 2.

Capacitor C4007 couples a sample of the $30-\mathrm{Hz}$ pulse-generator signal to a sample-and-hold stage in the IC. Capacitor C4012 is the charge-holding capacitor. As long as the signal is present, the logic output of the sample-andhold stage stays high. When this logichigh output is fed to inhibit gate AND1 , it keeps the gate operative and feeding a logic high to gate AND-2 (Fig.1) through threading IC pin 19.

When the signal ceases, indicating that the AC motor has stopped, C4012 discharges-leaving a logic low at pin 23. The sample-and-hold output goes low. Gate AND-1 inhibits gate AND-2, stopping any threading action. The same logic-low indication appears on the auto-stop signal line, and also trig-
gers a STOP solenoid into action.
Figure 2 shows that other safety shutoffs work through IC4001 and duplicate those shown in Fig. 1.

In Fig. 1, the delay system works for the unthreading operation just as for threading. If the unthreading is not finished in less than 10 seconds, the delay system shuts off the threading motor.

Brake-release electronics

During the loading or threading operations, the brakes on both the takeup and supply-reel turntables must be freed. In some VCR's a solenoid controls the brakes; in others, a mechanical link-up provides control. (In the rewind and unthreading modes, individual links manipulate the turntable brakes one at a time.)

Figure 3 shows the brake-release solenoid electronics. When the solenoid is at rest, the brakes are spring-applied to both takeup and supply-reel turntables. When activated, the solenoid releases both brakes. Inserting the cassette and dropping the lift compartment to its latched position turns on the cas-sette-in switch. This action applies 12volts DC directly to the solenoid.

The bottom of the solenoid goes to ground through Q4011, but only when the transistor turns on. Figure 3 shows that there are two paths to the base of Q4011. One is via PLAY switch S4001, PAUSE switch S6080, R4006, and D4013. This path turns Q4011 on only when the PLAY pushbutton is down.
The other signal path goes through LOADING-STOP switch S6506, D4016, EJECT switch S4004-3, R4014 and D4009. Inserting a cassette applies DC to this enable path to Q4011. Therefore the transistor turns on and the brakes are released.

At the end of threading, switch S6506 opens and the brakes are set again. The same procedure occurs if the EIECT mode is selected; the mechanical linkages control the takeup brake.

FIG. 4-END-OF-TAPE DETECTOR CIRCUIT uses sensing coils to detect the metallic leaders at both ends of the magnetic tape.

Once the tape has been threaded, both brakes can be released simultaneously by pressing either the RECORD or PLAY buttons (they're labelled FORWARD on some machines).

The braking system is simple, but you must remain aware of it. If a malfunction leaves the brakes set during the threading operation, the machine will shut down when the ten-second safety delay expires. That's because turntable brakes prevent the tape from being pulled out of the cassette.

Automatic stop signals

As you already know, due to the load-inhibit operation of gate AND-2 an automatic-stop signal from any stage in the machine can prevent loading or bring it to a halt. Hence, when you set out to troubleshoot a loading problem, you may track the fault to some faraway stage or section.

Now, refer again to Fig. 1. If you're

SENSING COILS detect metallic leaders at both ends of tape to provide an end-of-tape indication that is used to trigger automatic shutoff.
familiar with digital-logic diagnosis and tracing, you know there are two ways to check out inhibit operation of the AND-2 gate.

You can check the top input with a logic probe (or voltmeter). If the input measures logic low, the warning must be coming from elsewhere in the machine, and you troubleshoot there for the fault.

FIG. 5-DEW SENSOR CIRCUIT prevents operation if moisture condenses in the tape transport mechanism. Moisture can seriously damage tape.

If the inhibit input measures a logic high, the auto-stop signal line is OK, and the fault must lie inside the thread-ing-logic system.

A less-desirable approach can be used: Disconnect the auto-stop line and feed a logic-high input to the inhibit side of gate AND-2. If all is well in the threading system, loading or unloading will start again. (Warning: Do not let the loading continue. The fault located "elsewhere" might cause damage, which is the reason for including the inhibit gate. Track down the trouble that is causing the auto-stop signal (a logic low).
Automatic-stop signals comprise part of the system control network. The threading/unthreading system you just studied is part of the system control, as are the brake release system and all mode pushbuttons. Here are other stages you must investigate when you detect a logic-low signal on the automatic-stop line.

Tape-end detector-Metallic leaders at both ends of the video tape in the cassette indicate end-of-tape. Two coils do the supply sensing. A supply-end sensing arm holds one coil beside the left-side tape path, next to the tape-tension arm. In the PLAY, RECORD, or FASTFORWARD modes, this supply-sensing coil triggers automatic shutoff just before tape runs out. A fixed bracket holds the takeup-sensing coil next to the tape path on the right side beside the threading ring. It works the same way, but only during REWIND.

Figure 4 shows the switching that connects the sensing coils. DC from one of the forward-mode switches couples supply-sensing coil L6501 into the feedback loop of an oscillator. The signal from the oscillator is rectified and filtered in the detector, and then continued on page 91

A precision color-bar generator is desirable when servicing the color circuits of TV receivers and all types of video recorders. This new instrument brings TV-station accuracy to the shop at service-bench prices.

JACK DARR SERVICE EDITOR

UP TO NOW, THERE HAVE BEEN TWO KINDS of TV test equipment: One kind is expensive, accurate and designed for use in TV stations and studios. The other kind is inexpensive, less accurate and made for TV service work. Now, the B\&K-Precision Product Group of Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60635 has come out with an instrument that is accurate enough for use in TV stations and studios and, at the same time, versatile and inexpensive enough to be valuable in the better TV service shops. In fact, the price is a real breakthrough at $\$ 795$.

Their new model 1250 NTSC (National Television Systems Committee) ColorBar Generator will generate the same col-or-bar patterns used in TV stations with the same accuracy. It will also make four stock convergence patterns and all three color rasters (or any mix of the three). The RF output is on Channel 3 or Channel 4 and is crystal controlled. There is an IF output at 45.75 MHz , also crystal controlled. The sound subcarrier is at 4.5 MHz and may be frequency modulated with either a 1 kHz or 3 kHz audio signal that is generated internally. The audio signal is also available at a jack labelled AUDIO OUT for testing audio equipment, and there is a jack for an external audio input signal.

There is a composite video output that can be calibrated to the standard 1.0 volt P-P negative modulation, or can be varied up to 1.5 volts P-P. This is another standard signal for making many tests on video tape recorders, whether the big studio types or the home units. The video can be modulated by any of the standard patterns. A very accurate $3.579545-\mathrm{MHz}$
color subcarrier signal is available. All RF and video output impedances are 75 ohms and are equipped with BNC connectors. Audio inputs and outputs are phono jacks.

NTSC

Now, just what is an "NTSC color Signal?" Back in the early 1950's there was quite a hassle over two different color-TV systems. One was approved by the FCC and tried out: That was the CBS system which used a color wheel. The other, developed by RCA, was the all-electronic color system, with all of the matrixing done inside the picture tube. Eventually, that was the system chosen.

A national committee was appointed to study the RCA and other systems, and came up with a set of standards for transmitters and receivers. (That committee was the National Television Systems Committee.) In 1953, after some years of testing, deliberation and probably quite a bit of arguing, they selected what are now the NTSC Standards. The color TV systems now in use in Europe-PAL, and the French SECAM-were considered, tested and not chosen.

The NTSC system has worked very well so far; there have been no major alterations since its adoption. One of the headaches was coming up with a system that was fully compatible with black-andwhite TV.

The NTSC Standards cover every-thing-the TV signal transmitted from the station, color modulation, and you name it. Thus, TV station engineers now had a set of standards to go by in setting up their equipment; and receiver
designers used those standards for making color TV receivers.

Now we come to the nitty-gritty: They also specified an NTSC Standard colorbar pattern that could be used in setting up TV cameras, monitors, and color TV receivers as well. There are several of these patterns, intended for use in checking the ability of TV equipment to reproduce the transmitted signal exactly.

At first, only TV stations had generators capable of producing the NTSC pattern. They were big and expensive, so only very few (if any) TV shops had them. Now, we have an NTSC generator that is not only accurate enough for a TV station but also can be afforded by a service shop. Somewhat simpler and less accurate types had been developed for the service shop, but they had some disadvantages, especially if you wanted precision.

The NTSC color bars

Let's go into the NTSC color-bar pattern a little more; there's more to it than meets the eye. Figure 1 shows the waveform of one line of the NTSC color-bar pattern. On the screen it looks like an ordinary color-bar pattern, with colors in a different place than we're used to. The first bar is pure white; next, in a logical progression comes yellow, which is nearest to a white. Then comes cyan (bluegreen), green, magenta (blue-red), red, blue, and finally a black bar. It progresses from the brightest color, nearest to white, to the darkest, blue, which is nearest to black. The color signals are carefully controlled both in phase and in amplitude. Each of the colors is fully saturated; that is the difference between the NTSC sig-

Fig. 1-NTSC COLOR BAR waveform for one horizontal line. The waveform is 1 volt P-P and is divided into 140 IEEE units. Note the difference in luminance levels of the different colors and the staircase pattern.
nal and that of lower-priced generators. With lower-priced generators, the color bars are all at the same amplitude, and some are over-saturated.

The NTSC composite video signal is exactly 1.0 volt peak-to-peak. It is divided into 140 equal units, called "IEEF units." At first they were "IRE units" from Institute of Radio Engineers, but when this was changed to IEEE (Institute of Electrical and Electronic Engineers), the name of the units was also changed. Note, in Fig. 1, that the zero-reference for the composite video signal is the blanking lev-el-the porches of the horizontal sync pedestal. The tips of the horizontal sync pulses are at -40 IEEE units; the sync pulse is approximately 0.3 volt. Note that the black level is at +7.5 units. That is called the setup level and is the black reference for the picture. Levels of luminance between 7.5 and 100 units produce various shades of gray. The brightest white is 100 units, or 100% and it is equivalent to zero modulation of the composite RF signal. The sync tips are at -40 units, which corresponds to maximum modulation of the RF carrier-hence the strongest signal. The advantage is that the weakest signal-where interference can cause snow-is in the white parts of the picture where snow isn't so easy to see.

Now, we come to the really different part: Note that each color is at a different luminance level. Note also that there is a difference between some colors. That was done so that each color will have precisely the right amplitude (of the chroma carrier) to give it full saturation-no more and no less. Note that the luminance has a "staircase" effect. That is a very important part of it. The staircase is another standard NTSC signal.

As previously mentioned, on the screen
it looks like a color-bar signal. On the scope it doesn't! Therein lies a major advantage. For example, when you feed the NTSC signal into the antenna you should see an exact duplicate at the video detector output. (Set the scope to display it at exactly 1.0 volt P-P). Feed in a video signal from the model 1250 to the upper channel of a dual-trace scope. (All RF, IF and video outputs may be used at the same time.) If there is any difference between the two waveforms, you have problems in the RF or IF circuits of the receiver. In fact, you can superimpose the two waveforms to make comparison easier. The model 1250 also provides scope trigger signals at vertical and horizontal frequencies, so that the patterns will be steady. Any distortion or poor frequency response, etc, will make the waveforms look different.

The -IWQ signal.

If you've ever seen a network color-bar signal (usually switched in by accident!) you've probably seen black and white bars across the bottom. That is another NTSC standard signal, called the "-IWQ." It's composed of equal parts of the signal

FIG. 2-NTSC VECTORSCOPE graticule. Each color phase produces a dot rather than the familiar "petal."
called -I (which is chroma at a phase angle of 303° from burst), a fully saturated 100 units white bar and the Q signal (which is chroma at 33° from burst). Both the I and Q signals are at a level of 40 units. The last bar you see at the right is a black signal at the 7.5 unit reference level.

The IWQ signal is used mainly in studio phase measurements, in video processors, amplifiers, and similar items. For an eyeball test, the first quarter of the pattern should be black, then you see pure white, then black again for the rest. Transitions between black and white should be sharp.

The NTSC color-bar pattern can also be used for vectorscope analysis. That is the method used in TV stations. The pattern is basically similar to the familiar "flower" pattern, but it has no petals; each color makes a single dot on a vectorscope. Fig. 2 shows a vectorscope ratio graticule for use with the NTSC colorbar pattern. Note the small boxes for each color or combination of colors; each color must fall within its box. If it isn't in the box, there's an incorrect phase.

One novel test is possible with this graticule and the model 1250. The model 1250 will make a pix raster of each primary color-red, blue, or green. You can also use two colors at once to make combinations such as cyan. On the vectorscope only the dots for the color in use will be seen. Very small phase shifts can be detected by this method. Note that the colors, burst, I, Q, etc., are all marked on the graticule.

The Staircase

Another NTSC standard pattern that is available with the model 1250 is the "staircase." The reason for the name should be obvious from the waveform. There are actually three different staircase patterns available, each with a different purpose. They are shown in Fig. 3. The pattern in Fig. 3-a is just 5 steps of video luminance without modulation. The screen will show a pattern of vertical bars, starting at left with black and going to white. The steps are 20 IEEE units each. These bars can be used to check for luminance response and linearity. It's the same procedure as with the color bars: Use a comparison pattern on one channel of the scope. All steps in the signal at the video detector must be exactly the same amplitude as the signal from the model 1250. Turn the chroma switch on the front panel of the model 1250 off to get this signal.

Figure 3-b shows one of the two modulated staircase patterns. Each step is modulated 20 IEEE units with chroma at burst phase. To get this signal, push the low staircase button. Figure $3-\mathrm{c}$ shows the high staircase-identical but modulated at 40 IEEE units.

What can you do with these two unmodulated staircase signals? You can make

WAVEFORM
(I HORIZONTAL LINE OF PATTERN)

FIG. 3-NTSC STAIRCASE waveforms. The waveform shown in a contains only luminance and produces a series of bars on the picture screen from black to white. The low staircase waveform shown in b contains 20 IEEE unit chroma modulation. The high stairc. Ise waveform shown in c contains 40 IEEE unit chroma modulation. The waveforms shown in b and c are used to measure differential gain.
tests that up to now have been very difficult. They are for differential gain and differential phase. Either of these can cause color distortion. The TV studios use these two signals for checking video processing equipment of all kinds-video monitors, VTR's, etc. Now, with these two waveforms, you can check for these parameters.

Differential gain means that the chroma amplitude should not vary as the luminance is varied. That is done for you automatically; the staircase steps the luminance from zero to maximum; the amplitude of the chroma signal must remain the same as the input. Any variation means that something is wrong in the equipment. The two modulation levels let
you check so you can be sure there is no difference between low and high modulation levels.

The chrome phase must not shift as the luminance is varied from 0 to 100%. If it does, you have differential phase-shift problems. To check that, the staircase pattern is displayed on a vectorscope with chroma modulation. If there is any differential phase shift as the luminance steps up, it will show up as an angular shift of the dot on the graticule. Use both low and high modulation to make sure.

On the bench

The model 1250 can be a fast and accurate aid to any kind of service work: color TV sets, VTR's, VCR's, or you name it.

The front panel of the unit is laid out so that switching can be very easy. There are 15 pushbutton switches that are functionally divided into three groups. The NTSC patterns are all selected by the right-hand group, along with the FULL BURST, TOP bURST (that one turns off the burst for only the top fourth of the screen on the color bars and raster patterns: it's used to check the sync), CHROMA, -IWQ, Low Staircase and high staircase pushbutton switches.

The next group, from right to left, are the four convergence pattern switches: DOTS, CROSSHATCH, DOTHATCH, and CENTER CROSS. Those are mechanically interlocked with the NTSC switches; if any of those is turned on the other patterns are turned off. Because of interlaced scanning, you may see a small vertical jitter in the convergence patterns. That is normal and won't affect convergence adjustments. It does not indicate any problems in vertical sync.

Last, but definitely not least, are the RASTER switches: one for each primary color and a raster ON-OFF switch. The raster ON-OFF switch is interlocked so that it turns off the NTSC or convergence switches that are on. There are three color raster buttons; you can make eight different color rasters with them. All switches off produces black at the 7.5 unit reference level. This is used for adjusting the receiver brightness control. Pure red, green, or blue rasters are for purity adjustments. Red was used in many older sets and some new ones. In some sets with in-line pix tubes, the green raster is for purity. By pushing any two at once you can get the combination of the two colors. Red and green give yellow, and so on. The three pure colors could be handy for checking the guns of a picture tube for equal emission. Pushing all three primaries at once gives you a pure white raster at a 75 -unit level.

The IF output can be used for tuner substitution. It has a level of 10 mV with no load, which is ample.

If you use all possible combinations of switching, you can get a total of 28 different patterns! The manual lists them.

For TV and VTR testing, the composite video signal is available through a jack on the front panel. It has a gain control that will vary the level from 0 to 1.5 volts P-P. Turning the control fully counter clockwise until a click is heard sets the output at the standard level of 1.0 volt $\mathrm{P}-\mathrm{P}$ with the sync negative going. That is the standard video input used for many VTR tests. Any of the patterns can be used to modulate the video signal. You can feed the NTSC color bar signal into a VTR, record it, then play it back to make sure it comes out the same as it went in. If you have sound problems in the VTR, you can feed an RF signal into its tuner, with either of the two audio frequencies as modulation.
continued on page 93

An inexpensive wide bandwidth preamplifier in kit form that has many applications on your workbench.
 EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

A WHILE BACK I WAS WORKING WITH SOME low-level RF circuits and discovered that my frequency counter would not pick up those feeble signals. Needing that information, I had two choices. One was to rebuild the counter-input stage to provide more gain. That seemed to be too much trouble so I chose to add a preamplifier.

International Crystal (10 North Lee St. Oklahoma City, OK 73102) has a little two-stage, broadband-amplifier kit that looked good for this application. The BAX-1 has 30 dB to 6 dB gain over a range of 20 Hz to 150 MHz -that was just what my counter needed. I put it together in about ten minutes and temporarily inserted it between the RF circuit and the counter.

The setup worked so well that I started taking the counter cabinet apart to stick the amplifier inside. Fortunately, I decided to try a few more things before wiring it in. Here is what happened.

With the BAX-1 in the input line, my $A C$ voltmeter was much more sensitive. Of course, all measurements were relative instead of absolute but those really weak ones were in there.

The BAX on the output of a little crystal oscillator made an excellent low-power transmitter. Placed between the antenna and a shortwave receiver, it amplified the incoming signals and thus enabled the receiver to pick up weaker signals.

That's just for starters. There is no reason why the BAX can't be used to increase the sensitivity of a microphone. I want to try it on my TV antenna and on the FM in the car. The BAX is quite versatile and, in some applications, should be even better with a tuned circuit or filter before and/or after it. Needless to say, mine hasn't gotten into the counter cabinet yet and probably won't, at least for a good long while.

The BAX-1 ($\$ 6.67$ including postage in U.S.A.) contains a circuit board, all parts, and mounting hardware. You can get the kit or build your own from scratch. With International's permission, the circuit is shown in Fig. 1. There is nothing critical about its construction.

In a couple of applications I found that some method was needed to vary the gain (there was too much). Of course, that can

FIG. 1
be done in several ways; for example: a pot used as a voltage divider at the input, or by varying the bias on a transistor. The easiest way for me was to vary the applied voltage. The BAX-1 specifies 9 to 15 volts but it works fine at much lower voltages, too.

By the way, International has several other interesting little kits that I really want to investigate. If you have used any of them in unusual applications, how about sharing your experiences with me and other readers?

Technical training

In past columns I have mentioned from time to time the need for the serious hobbyist to learn more than just tinkering will provide. The real pleasure of electronics is found beyond the stage of following "cookbook" building plans (though that is a good place to begin). The satisfaction that comes from experimenting, modifying and, ultimately, designing is hard to beat.

Going beyond the simple matter of just following instructions requires a basic knowledge. Several suggestions have been made for acquiring that base. Among the suggestions was independent study-a method probably most suited to a majority of the hobbyists.

One of the problems with independent study has been finding the right materials. I have told you about study materials from the Heath Company and the American Radio Relay League, among others. Recently, I have discovered some excellent materials from the McGraw-Hill Book Company.

McGraw-Hill publishes textbooks on a
wide range of technical subjects. In the electricity and electronics area, the list goes on and on from servicing to applied mathematics. Of particular interest at this point are a couple of texts that I have had an opportunity to examine quite thoroughly. They are: Electronics: Principles and Applications by C. A. Schuler, with its Activities Manual ($\$ 16.00$ and $\$ 7.50$, respectively) and Digital Electronics by R. L. Tokheim, with its Activities Manu$\mathrm{al}(\$ 8.50$ and $\$ 5.75)$.

As a professional educator, I have examined many textbooks over the years. Those two are near if not at the top in instructional quality. Both are unusually well-written and well-presented. Organization of content, clarity of circuit diagrams, and explanatory text are outstanding. Best of all, from our standpoint, is that those textbooks are as well suited to independent study as they are to classroom use.

I recommend either or both of those books, depending upon your interests and needs, for building that base of knowledge which will enable you to get the most from your hobby. If you choose to go that route, I also recommend that you get the corresponding Activities Manual(s). They are not necessary to an understanding of the texts but they will be an additional help.

The Manuals contain specific lab-type activities to illustrate and "nail down" the concepts in the texts. Components that may be needed to carry out the activities are readily available and inexpensive. (You probably have most of them in your junk box.)

It is unlikely that you can find those books and manuals locally. Exact prices and ordering information can be secured from Gordon Rockmaker, Editor in Chief, Electricity/Electronics, Gregg Division, McGraw-Hill Book Company, 1221 Avenue of the Americas, New York, NY 10020.

Again, I urge those of you who have not done so to do some studying and enjoy your "work" more!

Photo timer

J. D. Miner of Lima, OH has written about adapting a clock module for photographic use. Color processing, as you know, requires several sequential timed steps. Of course you can do that, J.D. It will start at zero and read elapsed minutes and seconds.

Most, if not all, modules have a reset

CLOCK/CALENDAR KIT

0101 Displays time of day, date or alternate between both automatically. May be connected to 8 ohm speaker for alarm clock. Operates from 120 VAC 60 Hz . $\$ 49.95$ Walnut case extra, $\$ 24.95$

capability. Take the National 5316 as an example: Activate the seconds display (pin 32) and then both the slow (pin 33) and fast (pin 34) set. The clock resets to midnight and the display, showing minutes and seconds, starts at zero.
As a matter of fact, the off-the-shelf commerical clocks that 1 have seen do exactly the same thing. You might make it a little more convenient as a timer by wiring the slow and fast pins to one dou-ble-pole switch.

But, J.D., let me pass along another way you may like. Some 25 years ago, when I was deep into photography, I ran across an article in one of the photography magazines about using a tape recorder to time color processing. What I did was to make a tape recording of some favorite music and, at appropriate times, faded to instructions; e.g., "in 30 seconds do thus-and-so. . . . now." Not only did the tape do the timing and free me from watching the clock, but it provided instructions and music to "agitate" by! R-E

WE'RE FIGHTING FOR YOUR LIFE

The world of electronics gee-wizardry

-YOURS FREE.

32-pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send $50 \dot{\varepsilon}$ for first class mail.

CIRCLE 40 ON FREE INFORMATION CARD

THE BIG PLUS +

 Graphic Equalizer
ASSEMBLED

 s20000KIT
${ }^{8} 110^{00}$

LOADED with Quality Features!

- Stereo ... Eleven Bands Per Channel • Extremely Low Noise \& Distortion • LED Peak Indicators • Center Detent ("flat") sliders • Built-in "record" Switching \bullet Line and Microphone Level Inputs/Outputs • Regulated Power Supply • Fully Guaranteed • Horizontal or Vertical Cabinets • Kit or Fully Assembled • Plus Much, Much More!

> Absolutely equals or exceeds overall performance and features of any graphic equalizer made today!

AARON-GAVIN INSTRUMENTS, INC. 17231 Corla Avenue Tustin, California 92680
Yes! I've enclosed $\$ \quad$, RUSH me: Yes! l've enclosed $\$ \square \quad \square$ brochure \square send - unassembled equalizer kits at $\$ 110.00$, p.p.d. \square Horizontal (flat) \square Vertical (up-right) Califormia residents include 6 :- sales tax Name
Address Visa \& M
Card No. Card N Exp. \qquad Bank
City \qquad Date

ooniputer ooraner

Here's a look at the various ways you can interface a microprocessor to a 7 segment LED display.
J. TITUS, P. RONY, D. LARSEN and C. TITUS

REGARDLESS OF THEIR APPLICATION, MOST microcomputers need peripheral I/O devices for the input and output of data. The more common output devices include 7 -segment displays, 5×7 dotmatrix displays, printers and CRT displays.

This month, we'll look at several methods that can be used to interface 7 -segment displays, as well as different programs to "drive" such displays that are widely used in electronic games, calculators, point-of-sale (POS) terminals, gasoline pumps, children's toys and taxicab meters.
One of the simplest methods for interfacing a 7 -segment display to a microcomputer consists of latching the appropriate data values from the data bus under software control (see Fig. 1). The latch's inputs (7475) are wired to the computer's bidirectional data bus, and the latch's outputs are wired to a 7 -segment decoder/driver (7447). The decoder's outputs (current-sinking) are wired to the 7 -segment display with 220 -ohm current-limiting resistors. When an

Fig. 1

TABLE 1-DISPLAYING A 39 on the two-digit display

ITHIS SECTION OF A PROGRAM OUTPUTS THE
/BIT PATTERN 00111001 (OCTAL 071, HEX 39) ITO AN OUTPUT PORT EQUIPPED WITH TWO ISEVEN-SEGMENT DISPLAYS.

Fig. 2
out 125 instruction is executed, the content of the 8080 's A register is latched by the display interface, and the two BCD numbers represented by D7-D4 and D3-D0 are illuminated on the two displays. The instructions listed in Table 1 cause a " 39 " to be displayed.

To display a 10 -digit number using this method, 10 latches, 10 decoder/drivers, 70 resistors and 10 seven-segment displays will be required. One method of reducing the "parts count" for this interface is to use a device such as the 8255 Programmable Peripheral Interface (PPI) integrated circuit. This device can be used as three independent 8 -bit output ports, so it is the equivalent of six 7475 latches. Therefore, two 8255 PPI IC's, along with 10 decoder/drivers, 70 resistors and 10 seven-segment displays would be required in the interface. An obvious disadvantage of this method is the large number of IC's required. However, one advantage is that the software needed to drive this interface is relatively simple. Also, the microcomputer only has to output this information once to the interface for the information to be continuously
displayed. This, of course, is due to the latches or the 8255 IC's in the interface. Thus, the microcomputer can output numeric information once and then go on to perform any other required operations.

Another interfacing method is digit multiplexing. Multiplexing reduces the display-interface electronics (number of parts) to a minimum; however, at the expense of longer and more complex dis-play-driver software. Multiplexing a display consists of enabling or turning on. one particular digit with a digit-enable code and providing the BCD numeric information for that digit to a multidigit display interface. In this way each digit is turned on, one at a time, as the actual BCD data for each digit is provided. Multiplexing is usually only used with multidigit displays.

As an example, let's suppose the number " 237 " is to be displayed on a 3-digit multiplexed display. To display this number the BCD value for the digit "7" would be output to the interface along with the digit-enable code for the righthand display. After a short period ($1 \mu \mathrm{~s}$ to $10 \mu \mathrm{~s}$) the BCD value for number " 3 " would be output along with the digitenable code for the middle digit. Again, after a short delay, the BCD value for the number " 2 " and the digit-enable code for the left-hand display would be output to the interface. By performing this sequence 50 or more times every second, each digit in the display appears to be on all the time. This display method is used in hand-held calculators. Even though the digits are being turned on and off, it happens too fast for the eye to see. The interface for a 10 -digit multiplexed display is shown in Fig. 2.

When an outl25 instruction is executed, bits D3-D0 of register A determines which one of the 10 digits in the display will be enabled (turned on). Therefore, these 4 bits constitute the dig-it-enable code. Bits D3-D0 are latched (7475) and are decoded with a one-of-10 decoder (7442). The decoded outputs of the 7442 are wired to the common cathodes of the individual digits in the display. Bits D7-D4 provide the BCD code of the value to be displayed ($0-9$). These bits are also latched (7475) and are decoded by a 7 -segment decoder/driver (DS8857, manufactured by National Semiconductor, Santa Clara, CA):

An additional display method involves the use of an external display controller IC to control the multiplexed display. The Intel Corporation manufactures some of these IC's that are compatible with the $4004 / 4040,8080$ and 8085 ; these IC's are the 4269, 8279 and 8279-5. National Semiconductor Corporation also has developed two display controller IC's that can be used with 6 -digit displays. One of the devices (the MM74C912) can be used to display 0-9 and the other (the MM74C917) can be used to display hexadecimal numbers.R-E

The Clock of the 80's!

> A truly digital movement with traditional analog display. The time is shown by three electronic eyes as they move within three concentric circles.

Ifyoulove contemporary design butwant the more traditional, here is the clock for you. In creating our own version of the ever popular Grandfather Clock, we use the electroniceyeto display each second, minute, and hour, and also the simulated pendulum motion.
The diagonal model which has no simulated pendulum is available for wall mounting or with base as a desk clock.
Our synthesized sounds composed of tic toc, modified Westminster Chimes and Bongs are available for any AMELECT clock. The chimes and bongs are composed of six frequencies, providing realistic bell sounds. They are totally within clock cabinet.

The AMELECT clocks, cabinets may be your choice of Cherry, Mahogany, Maple, or Walnut hardwoods.

new idees

RELAY MULTIVIBRATOR

AMONG THE EARLIER MULTIVIBRATORS, one of the simpler models was a device using two relays and one or more capacitors and resistors to control the timing cycle and operating frequency. When it comes to small size and speed, all is in favor of the solid-state electronic multivibrator.
current activates relay RY1 and causes its normally closed contacts (RY1-1) to open. When the Cl charging current falls below the hold-in rating of RY1, the relay releases and closes contact RY1-1.
At that moment, the coil of RY2 is connected across Cl . The capacitor starts to discharge and the discharge current energizes RY2 and causes contact RY2-1 to open. When the discharge current drops below RY2's hold-in current rat-

FIG. 2

However, from time to time we may need the simplicity of the relay multivibrator. Most circuits shown in literature use the charging of a capacitor to control the timing and one or more resistors to limit the discharge current so it won't damage the relay contacts. The circuit in Fig. 1 was developed around two relays and a single capacitor to perform the same tasks as the more elaborate circuits.

Circuit operation is as follows: When switch S 1 is first closed, the Cl charging
ing, contact RY2-1 closes to start the cycle anew. The multivibrator will switch back and forth between the relays at a frequency governed by the capacitance of Cl , the resistance of the relay coils, the applied voltage, and the hold-in current of the relays. As the relays cycle, switching operations can be carried out as needed by auxiliary contacts on either or both relays.

A potentiometer can be inserted between the relays as in Fig. 2 so you can vary the cycling.-J. Ofer

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn $\$ 25$ plus a Circuit Board Holder, Standard Base and Tray Base Mount from Panavise Products, Inc. (See photo below.) Selections will be made at the sole discretion of the editorial staff of Radio-Electronics.

I agree to the above terms and grant Radio-Electronics Magazine the right to publish my idea. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material had not been previously published.

Title of Idea	
Signature	
Print Name	
Street	
City	
	Sate

LEADER

THESE 1980 B\&K OSCILLOSCOPES ARE IN STOCK AND AVAILABLE FOR IMMEDIATE DELIVERY

EARLY BIRD SPECIAL LOW PRICE

SUPER SPECIAL

HICKOK 385X 500 MHz COUNTER Reg 4999s

NOW 229^{95} LIMITED QUaNTITIES

Model LBO-520
30 MHz Dual Trace Scope with Delay Line

List Price \$1100 $\$ 879^{95}$

High Sensitivity.
Wide Bandwidth.
Single Shot Trigger. P-D-A CRT.

- 5 mV sensitivity facilities accurate signal viewing from low level sources.
- Built-in delay line makes it easy to view the leading edge of a pulse.
- Single shot trigger ($\mathrm{CH}-1, \mathrm{CH}-2$) captures transient phenomena - no guesswork, no "double-takes"

Automatic Transistor Checker

dentifies. Displays.

- A multipurpose, portable, transistor checker automatically better for laboratory, shop
- Checks transistors, FETs, diodes, good or bad at circul
- Automatically tests a broad range of parameters with simple, program on-off switches-no confusing buttons or lead changes.
- Automatically identifies Germanium or Silicon. plus emitter base and collector.
LED display plus audible tone indicates
- Absolute meter readout of DC parameters.

Regular price $\$ 189$ $\$ 159 .{ }^{95}$

THE TEST EQUIPMENT SPECIALISTS TOLL FREE HOT LINE 800-223-0474

CET YOURS FREE

PLEASE RUSH MY FREE 1980 CATALOG

name

address
city
\qquad
\qquad
state_z_z_

TION CARD
Now Build Professional Quality Printed Circuit Boards INSTANTLY With
 by (B) Bishop Graphics, Inc.

 Design ProductsWith E-Z CIRCUIT's revolutionary new pressure-sensitive Copper Design Products, you actually build "instant" professional caliber PC boards right in your own shop or home, WITHOUT chemicals, artwork, photography, screening or etching.
The exclusive new E-Z CIRCUIT Copper Design System contains everything you need to produce or repair a professional, printed circuit board with electrical and mechanical characteristics that simulate those of etched "production house" PC boards. Our unique Technical Manual, with easy-tofollow, illustrated "how to" tips and
techniques shows and tells you how.
E-Z CIRCUIT's pressure-sensitive copper products are only one dimension of the E-Z CIRCUIT family. The comprehensive E-Z CIRCUIT Technical Manual \& Catalog 102 contains detailed information on the entire product line, including:

- PC Drafting Aids to help you create professional PC board artwork
- General Purpose PC Plug Boards, DIP \& SIP Sockets, Terminal Pins, Wire and Accessories for building PC boards with today's fast, modern wire wrapping methods

E.ク Eitevir

by (B)Bishap Graphics. Inc.
5388 Sterling Center Drive • P.O. Box 5007 RE Westlake Village, CA 91359 U.S.A. (213) 991-2600 - Telex: 66-2400

OSCILLOSCOPE

continued from page 43
The LM3 18 op-amp (IC302) is used as a voltage comparator, holding the trigger input of the 555 positive until the timing capacitor has completely discharged. Premature triggering during retrace is thus prevented. The 555 provides a squarewave output at pin 3 that goes to +9 volts while the ramp is rising and drops to ground during retrace and hold-off. That line is capacitively coupled to the CRT grid to suppress the beam except during the sweep.

Baseline generator: The retrace-suppression line is used via R330 to synchronize the zero-baseline oscillator Q306, insuring that the switch from baseline to signal display will always occur at the start of a retrace when the beam is suppressed. For the lower sweep speeds, synchronization requires a slower oscillator, and for that C319 is switched in.

Each time unijunction transistor Q306 fires, C316 discharges through R332, setting flip-flop Q307-Q308 through D308 and initiating a baseline sweep. After the baseline sweep (or several sweeps if C316 is not discharged after the first one) pin 3 of the 555 goes low, bringing the base of Q307 low through C315 and D307, thus resetting the flipflop for a series of signal displays.

Power supplies: The power supplies (Fig. 5) are entirely conventional except for the -900 -volt tripler. Diodes D105 and D106 charge C102 to the peak negative voltage of the transformer secondary on the negative half cycle. On the positive half-cycle, C102 and the secondary appear in series to charge C101 to twice the peak secondary voltage (negative on top), through D103 and D104. On the next negative half-cycle, C101 and the secondary appear in series to charge C103 to three times the peak secondary voltage through D101 and D102. The drain on that supply is about 200 uA , so the $0.1 \mu \mathrm{~F}$ Mylar filters are quite adequate. Some of those capacitors are used at 20% or so above their rated voltage, but many have been tested at four times rated voltage with no breakdowns. Any string of five to ten Zener diodes adding up to about 900 volts will do for D109 through D113 if 180 -volt Zener diodes are hard to find. Capacitor C105 filters out the $60-\mathrm{Hz}$ noise picked up from the power transformer by the CRT heater winding.

We must breakoff our discussion of the oscilloscope's power supplies now and will conclude it next month when we will also go into construction, checkout and calibration.

R-E

For your copy of this value-packed
E-Z CIRCUIT Technical Manual \& Ca E.Z CIRCUIT Technical Manual \& Catalog 102, including information on the location of your nearest E-Z CIRCUIT Distributor, send $\$ 1.00$ - plus 50e for postage and handling - along with your name and address to:

radio products

More information on radio products is available. Use the Free Information Card inside the back cover.

AMPLIFIED MICROPHONE, model $T^{2} M$, has integral touch-pad encoder, 12-key keyboard and LED display. Other features include preamplified electret element, digital integrated tone genera-

CIRCLE 111 ON FREE INFORMATION CARD
tor with 3.5795 crystal, and a mixer amplifier with up to $15-\mathrm{dB}$ gain. Power is supplied by 6-0.16volt DC sources. Mike is housed in rugged shielded plastic, and an 8-foot, 3-conductor cable is included. Suggested retail price; \$105The Astatic Corp. Conneaut, OH 44030.

THREE-BAND ANTENNA, System Three, is a lightweight antenna designed for 10-15-20 meters, and features low SWR across the entire bandwidth, and a 14 -foot $\times 4$-inch boom length.

CIRCLE 112 ON FREE INFORMATION CARD
The antenna can survive up $100-\mathrm{mph}$ winds. Direct feed with 52 -ohm coax cable or a balun and has a power-handling capability of 2000 watts. Suggested retail price: $\$ 179.95$.-Wilson Electronics, P.O. Box 19000, Las Vegas, NV 89119.

CORDLESS REMOTE TELEPHONES, models $C P-100 S$ and $C P-200 S$, contain full duplex circuitry and have an effective range of 300 feet. Features include pushbutton number entry, automatic redialing of the last number called, and rechargeable nickel cadmium batteries. Model

CIRCLE 113 ON FREE INFORMATION CARD
$C P-100 S$ is portable style and CP-200S is phone handset style. Suggested retail price \$269.95.Cobra Communications, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60635.

MORSE CODE READER, Morse-A-Word, assembled or kit, is designed for SWL's and amateur radio operators. Accepts audio signals from communications receivers and displays 8 digital characters sequentially. Other features are a 5 - to 35 -

CIRCLE 114 ON FREE INFORMATION CARD
word-per-minute code speed, a built-in oscillator and monitor speaker for code practice. The unit measures $7.735 \mathrm{~W} \times 5.75 \mathrm{D} \times 3.375$ inches H , and weighs 4 lb . Suggested retail prices: kit, \$169.95; assembled, \$249.95.-Microcraft Corp., Box 513, Theinsville, WI 53092.

CB RADIO, model PC-100, has a wide range of control functions including volume/squelch, RF microphone gain, clarifier, tone control and ANL. A panel switch provides instant shift to Channel 9.

CIRCLE 115 ON FREE INFORMATION CARD

Performance is monitored by a meter reading signal strength and power output, a TX modulation indicator and an RX lamp. Operation is from 13.8 VDC, positive or negative ground. Suggested retail price $\$ 119.95$.-NDI, 22125 $1 / 2$ S. Vermont, Torrance, CA 90502.

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. (We are located at 2500 S. LaCienega Bl., Los Angeles, Calif.) Write to our mailing address shown below for Bulletin R-80
Grantham College of Engineering
P. O. Box 35499

Los Angeles, California 90035
Worldwide Career Training thru Home Study

service olinic

How to locate faults in the all-electronic tuners

JACK DARR, SERVICE EDITOR

THE ALL-ELECTRONIC TUNER HAS BEEN with us for a while. Now they are beginning to show up on our service benches, too. As with all of the other innovations, we have to devise a method of attack for the problems that are showing up.

The problems are complicated. However, there is an old saying: "All complex circuits are nothing but a lot of simple circuits tied together."

If we look at the schematic of the electronic tuner functionally and rationally, we can get a much better idea of what is wrong and where. Most of the troubles will be the same as in the older mechanical tuners-snow, wrong channels, and so on. Translation: What does the thing do? It tunes in, converts and amplifies the RF TV signal, and makes the IF out of it.

FIG. 1
The all-electronic tuners are composed of two major parts - the tuner itself and another unit that controls it. Figure 1 shows a block diagram. The tuner contains no moving parts. The only things that "move" when you change channels are voltages. The control circuit can be fairly simple, ranging from a couple of IC's to generate the voltages, all the way up to the frequency-synthesizer and mi-croprocessor-controlled types. The purpose of the control circuit is to generate the tuning voltage in response to signals from the keyboard.

Understanding that gives us our first handle on the problem. Look at the TV set. What is it doing? If the answer is "nothing", providing just a plain or snowy white screen, then we may have a tuner problem. To make sure, use the old test: Feed the output of a tuner subber into the IF input and see if the rest of the set works. If so, the problem is definitely in the tuner and we've eliminated a whole lot of things.

The tuner will have the standard stages: an RF amplifier, usually a dualgate FET, a mixer, another mixer, and the oscillator. All tuning will be done with varactor diodes that are controlled by the tuning voltage from the control unit. If the TV set tunes to a wrong channel, or refuses to change channels, the first thing you need to check is that tuning voltage.

Sams, and others, provide us with the other necessity: very complete service data and pinouts on the various circuits. Among that service data is a table of the tuning voltages you should get for the various channels. For example, let's look at the tuner in an RCA CTC-92A chassis. You should read +1.8 volts for Channel $2,+19$ volts for Channel $6,+8.5$ volts for Channel 7, and +14.6 volts for Channel 11. Punch in the various channels on the keyboard and make sure these voltages are correct; there is a small tolerance. If the tuning voltage is OK but the tuner still doesn't work, then the fault should be in the tuner itself and not in the control unit.

Bandswitching is also done by voltages and switching-diodes. Those voltages are also given in table form in the service data. If they prove not to be correct, you have a control-unit problem. Same principle goes for the tuning voltages. If the voltages are correct, the trouble lies in the tuner circuitry.

Since these are tuners, we can use sig-nal-tracing tests to find out which stage is bad, just as we did with the mechanical tuners. Inject a signal into the mixer input. If that produces some kind of picture or at least a reaction, move to the RF input. Easy way: you do not have to make contact with the circuit. For safety's sake, connect a short piece of insulated wire to either lead of an antenna, or to the RF output of a bar-dot generator. Just hold-
ing the insulated end of the wire near the input of a stage should radiate enough signal into it to get some reaction.
Many of those units are modular. At first, you would probably be better off simply to replace the suspected module. However, when you're more familiar with them, you could try to locate and replace bad parts since the modules are pretty good-sized with "room to work" and make tests.
A lot of set-makers have come out with very detailed descriptions on how those circuits work, along with servicing hints and check-points-Magnavox, RCA, Sylvania and others among them. Get hold of those descriptions and read up on them. They provide a very valuable source of reference and familiarization material. Service data is absolutely necessary so that you'll know where the test points are for the voltages, etc.

So, I don't see why the new tuners should be any more difficult to service than some of the impossibly-crowded old ones. In many cases, they should be a lot easier! (For our sake let's hope so.) If you use a calm "functional approach:" Look at it and see what it's doing, then look at the service data and see what could make it do that, the new tuners should be much simpler than you'd think at first glance.

New service center

I've just gotten a notice that PTS Electronics, Inc., has opened a new service center at 1289 Madison Ave., P.O. Box 41043, Memphis, TN 38104. They rebuild tuners, modules, and quite a few other things. That should improve service for people in the Mid-America area. John Postlewaite, General Manager, invites all technicians to visit the new facility and get a first-hand look at the many things they can provide to help us out. R-E

service

questions

> VERTICAL RASTER LINES
> I'm having a problem with a Zenith model 20X1C38. The set has bright vertical lines in the raster. So far nothing that l've checked or changed has had any effectl Any help would be appreciatedo.B.G., Albuquerque, NM.

continued on page 84

SPECIFICATIONS

FREQUENCY Direct • 10 Hz to 60 MHz
RANGES: Prescaled • 10 MHz to 600 MHz
SENSITIVITY: < 15 mv at 30 MHz typical 25 mv at 150 MHz typical <50 mv at 450 MHz typical TEMP. $\quad .09 \mathrm{PPM} / \mathrm{C}^{\circ}(\pm 1 \mathrm{PPM}$ STABILITY: $\quad 20^{\circ}$ to 40° typ.)
GATE TIMES: Selectable -1.0 second

$$
0.1 \text { second }
$$

RESOLUTION: $1 \mathrm{~Hz}-10 \mathrm{~Hz}$ to 6 MHz
$10 \mathrm{~Hz}-10 \mathrm{MHz}$ to 60 MHz $100 \mathrm{~Hz}-10 \mathrm{MHz}$ to 600

INPUT IMPEDANCE:
$60 \mathrm{MHz}-1 \mathrm{Meg}$ shunted by 20 pf
600 MHz - 50 ohm
INPUT
PROTECTION: $\quad 100 \mathrm{~V}$ up to 10 MHz 50 V up to 60 MHz Prescaled input 2 V max.
DECIMAL
POINT:
POWER
REQUIRE-
MENTS:
BATTERIES: 4 each AA Ni-Cad.
SIZE:
WEIGHT

Automatic placement
9 to 15 V AC or DC 300 ma .
$33 / 4^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W} \times 5^{1 / 2 "}$ D.
1 Lb .9 Oz . with batteries.

THE NEW TRIONYX TROIOOO HAS BEEN DESIGNEO TO SUCH STANOAROS THAT ONLY MODERN DAY TECHNOLOGY CAN GIVE YOU WITH FEATURES YOUD EXPECT ONLY FROM FREQUENCY COUNTERS COSTING MANY TIMES MORE. THE TR-1000 FEATURES AN ATTRACTIVE HEAVY BLACK ANODIZED ALUMINUM CABINET. LARGE . ${ }^{\prime \prime}$ LED DIGIT DISPLAYS, SELECTABLE GATE TIMES WITH GATE INDICATORS, DIRECT AND PRESCALED INPUTS FROM 10 Hz to 600 MHz . 50 OHM AND 1 MEG OHM INPUTS BOTH WITH AMPLIFIED SUPER SENSITIVE DIODE PROTECTED CIRCUITRY, AUTOMATIC DECIMAL POINT, FULLY SOCKETED IC'S, PORTABLE POWER PACK (4 AA NICADS), AND RAPID AND TRICKLE CHARGING CIRCUITRY.

DYMEK HAS THE SOLUTION WITH THE DA100D.

Need Full Frequency Coverage? The

DA100D covers the entire frequency range of $50 \mathrm{kHz}-30 \mathrm{MHz}$.
Looking For Better Performance? Dymek users worldwide praise the DA100 and its ability to out-perform long wire antenna systems.
Worried About Impedance Problems? An output impedance attenuator switch prevents RF overload and matches varying receiver input requirements.
Want To Go Portable or Mobile? Selectable operation from either 115-230VAC or 12VDC allows both fixed and mobile or marine operation (DA100DM available for use on or near saltwater).
Money Back Guarantee.
Rent/Own Plan Available (U.S. Only). Specs and Details on Request.CALL TOLL FREE NOW.

800/854-7769

Calif 800/472-1783
Local 714-621-6711 = TWX 910-581-4990

MCKAY DYMEK COMPANY

111 S. College Ave., P.O. Box 5000 Claremont, CA 91711
CIRCLE 67 ON FREE INFORMATION CARD

TUNER SUB \$19.95

Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellent performing yet very low cost sub for the technician who has to get all he can for his money . . . a "Poor Boy's Sub" for only $\$ 19.95$.

This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95$

We searched for a tuner that needed no cabinet and no controls . . . one that the tech could scounge the knobs from most any old TV
It took over two years but we finally found it. The gain is excellent . . . Battery drain is very low (only 18 mils). It's sell biasing so there is no R.F. gain control to fiddle with. . . It works equally well on tube or transistor sets . . . b/w or color . . . and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's IF cable to the "Poor Boy" and view the picture . . . That's it
no set up controls to confuse you.
We compared the "Poor Boy" with other subs costing over twice the price and found it to work just as well on all the comparison tests we made and often a lot easier to use . . . Even though instructions aren't needed . . . you get those too.

The "Poor Boy" is small enough to easily hold in one hand . . . no wires or controls dangling around it. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$, plus $\$ 1.50$ shipping.

Master Charge and Visa accepted
Try it for 10 days. . . If not completely satisfied return for full refund.

CALL TOLL FREE 1-800-433-7124

TEXAS TUNER SERVICE 4210 N.E. 28TH STREET, FORT WORTH, TEXAS 76117

SERVICE QUESTIONS

continued from page 82
This one has a vaguely familiar look. Quite a while back, I had a similar problem, also in a Zenith of about this vintage. After "checking and changing everything we could think of," I noted that with a probe held near the high-voltage cage the stray pickup waveform showed something odd. If you turn the gain up until you can only see the horizontal part of the waveform (the spike is up and off-screen), note if there are small vertical spikes on it. This is the scan part of the waveform. After some nail-biting, we tried changing the flyback and that fixed it!

I've still got the original flyback in a box and to this day I have no idea at all what the defect is! My only guess is that it could be some kind of oddball ringing in one of the windings.

ARCING PROBLEM

When I turn the brightness up on this Admiral model 4H12 chassis, light and dark horizontal streaks show up in the picture. I've checked quite a few things with no luck. Any ideas?-S.L., Massapequa Park, NY.
(I suggested that he do a few things, and check the high-voltage rectifier tube, etc.) Later he wrote:
" 1 checked all the things you mentioned. While I was working, I happened to touch the degaussing coil socket and it bit me! I disconnected it, and the arcing disappeared. A new degaussing coil fixed it. Thanks!"
Glad to hear he found the trouble. Degaussing coils can do some fantastically funny things.

MYSTERY STEREO IDENTIFIED

I can't identify this AM/FM stereo that's labeled "2S2," and is made in Taiwan. One source told me it was an Admiral model ST-1000, but Admiral says no. Both the output transistors are shorted, and a diode in one transistor base has exploded. The PC board schematic shows a diode as being a "KB-162" and something else is shown as a 15 -ohm resistor. The KB-162 in the working channel tests as a diode, but the 15 -ohm resistor looks more like a glass diode. It checks out as a glass diode too, but if it is it's leaky! It has a low front-to-back ratio. Any help will be much appreciated.-J.P., Lewistown, MT.

Without much hope, 1 looked in my Admiral file and found a 2 S 2 listed that certainly looks like the minischematic you sent! (Sams Photofact Folder No. 1443-2 shows it.) The output transistors are a complementary-symmetry pair. An RCA SK-3083 replaces the 2SA699A(Q), PNP, and an SK-3054 replaces the 2SC1266A(Q). The bias diode is an SK-3087.

Both the Sams and Admiral schematics show two diodes in series in this stage. If the "something" you have checks as a
diode, I'd say that it is one. (Just to dou-ble-check on the leakage, lift one end of the transistor and repeat your tests.) Since it has 0.7 volt across it, it is probably a silicon diode. Perhaps an Si and a Ge diode were used in series to obtain the required bias voltage. I once had an amplifier that had one Si and one Ge transistor in the output stages. I replaced them with two Si's; this resulted in quite a lot of distortion. I finally checked and found out what was going on.

TRANSISTOR SUBS WANTED

I need replacement transistors for a Dynaco model 120 power amplifier. I can't seem to locate them, anywhere. I understand Dynaco is out of business. Can you help?-H.K., Akron, OH.

Yes, apparently Dynaco has gone out of business. Sams lists the name but not the address and no Photofacts schematics! However, the RCA SPG-202X Transistor Guide shows the 2N3053 as an SK3024, NPN silicon, TO-39 case; the 2 N4037 is an SK-3262, NPN silicon, TO-39 case. The voltage for each is about 90. That should do it.

TEXTBOOK ON PICTURE TUBES?

I'm looking for a textbook on picture tubes that tells how to test and handle them, what instruments to use, etc. Can you give me the name of such a book?J.O., Richmond, IN.

I'm afraid not. This information is all available from set manufacturers (in their service data), and from picture tube manufacturers such as RCA, GE, Sylvania, etc. The "picture tube characteristics" books show a great deal of data on basing, voltage ratings, specs, etc. You should be able to obtain these books from your local radio-TV supplier.
In order to test picture tubes, you need a picture tube tester! These are manufactured by several companies. The instruction manuals give all the necessary data on how to use them. Suggestion: Try to obtain a Heathkit manual that describes one of this company's better picture tube testers. This manual will usually have a full circuit description and a very wellwritten explanation.

WORKS ON JIG, NOT IN SET

This RCA CTC-46 works on a test jig. Put it back in the cabinet and the vertical output transistors blew out! However, the yoke resistance checks out OK.-J.S., Lakewood, co.
Well, the vertical output used here is a complementary-symmetry circuit, as used in audio amplifiers. It will withstand an open but a short will damage it. So, you have a short somewhere in the vertical yoke or in the pincushion circuitry. If the yoke resistance seems to be OK, check the pincushion corrector circuitry, looking for possible shorts to ground or to boost. It's bound to be in there somewhere!

R-E

nem poroducks

More information on new products is available. Use the Free Information Card inside the back cover.

VOLTAGE METER, the Volt Sentry, is designed to identify faulty outlets and circuits. It can be plugged into the common outlet to indicate the voltage level. The scale is divided into Normal,

CIRCLE 151 ON FREE INFORMATION CARD
Brown-Out and Surge. The meter also shows the actual voltage being fed to an appliance plugged into the same outlet. Measures $21 / 2 \times 21 / 2 \times 11 / 2$ inches. Price is $\$ 14.95$.-Whitesavers Co., 71 E 13th St., Huntington Station, NY 11746.

SOLAR POWERED RADIO, 3 solar cells operate this 8 oz ., 1.5 volt AM radio during daylight hours. By means of a selector switch, the radio can also

CIRCLE 152 ON FREE INFORMATION CARD
run during darkness from a battery contained in the case. Suggested retail price $\$ 39.95$.-Solec International, Inc., 12533 Chadron Ave., Hawthorne, CA 90250.

HEX KEYS AND WRENCHES, offers 4 new sizes of short-series standard right-angle hex keys, sizes $1 / 2^{\prime \prime}, 9 / 10^{\prime \prime}, 3 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$, and two new longseries, sizes 8 mm and 10 mm . Featured are pouched sets No. LM 12 with 12 metric-sized keys and No. SLK17 with 17 short-series keys. The

CIRCLE 153 ON FREE INFORMATION CARD
wrench line is available in short, long, extra and foot-long series, and includes a wrench that can drive at angles up to 40° with full torque. These products are made of steel, are corrosion resistant and are heat treated for added strength.Vaco Products Co., 1510 Skokie Blvd., Northbrook, IL 60062

LED SAMPLER KIT, model EK-2, contains samples of LED indicator lights that can be used in breadboarding or building working prototypes. The kit consists of 28 different LED's and assem-

CIRCLE 154 ON FREE INFORMATION CARD

blies in 21 styles and 3 colors, including plain, panel-mounted, and PC-board-mounted LED's, and complete assemblies that include currentlimiting resistors and protective diodes. Price is \$10 postpaid with check or money order.Industrial Devices, Inc., 7 Hudson Ave., Edgewater, NJ 07020

AC VOLT/AMMETER, model 30, The Grabber, is a clamp-on handheld instrument designed for fast accurate service checks on electronic equipment. The unit has a one-inch jaw opening, a sin-

CIRCLE 155 ON FREE INFORMATION CARD
gle range switch, a lock switch for holding readings and an easy-to-read, large dial face. AC ranges are 0-300 amperes in six ranges and 0continued on page 90

Generate virtually any wave shape with famous B\&K-PRECISION cost-effectiveness!

The B\&K-PRECISION Model 3020 sweep/function generator is the most versatile signal source in its price range. This instrument alone can replace a function generator, sweep generator, pulse generator and toneburst generator. Frequency coverage spans 0.02 Hz to 2 MHz in seven ranges, each with linear 1000:1 frequency control.

A low-distortion, high-accuracy signal source, the 3020 can generate almost any waveform, including sine waves, square waves, TTL square waves, toneburst, pulses and ramps. All can be inverted. Internal linear and log sweep capability is also featured. Both modulation and carrier levels can be varied so even a double sideband suppressed carrier test signal can be generated.

For applications requiring standard signals, the Model 3010 low distortion function generator is offered. The 3010 generates sine, square, TTL square and triangle waveforms from 0.1 Hz to 1 MHz in six ranges. An external VCO input is provided for sweep frequency tests. Variable DC offset is included.

The 3020 and 3010 are available for immediate delivery at your local distributor. A ten day free trial is available at many locations.

PRECISION DYNASCAN CORPORATION

6460 West Cortland Street Chicago, Illinois 60635 - 312/889-9087
intl. Sis., 6460 W. Cortland St., Chicago, IL 60635 Canadian Sales: Atlas Electronics, Ontario

EOUIPMENT AMD TRAIIING NO OTHE S SCHOOL CAN MATCH.

 NTS HOME TRAINING INVITES YOU TO EXPLORE MICROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EQUIPMENT YOU ASSEMBLE AND KEEPWithout question, microcomputers are the state of the art in electronics. And NTS is the only home study school that enables you to train for this booming field by working with your own production-model microcomputer.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We

believe

that training
on production-
model equipment,
rather than home-made learning devices,
makes home study more exciting and rele-
vant. That's why you'll find such gear in all 14 of NTS's electronics programs.

For instance, to learn Color TV Servicing, you'll build and keep the 25 -inch (diagonal) NTS/HEATH digital color TV.

In Audio Electronics, you'll be able to assemble your own NTS/HEATH digital stereo receiver with 70 watts per channel.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly acquire practical know-how.

Send for the full color catalog in the electronics area of your choice-discover all the advantages of home study with NTS!

NTS also offers courses in Auto Mechanics, Air Conditioning and Home Appliances. Check card for more information.

NEW PRODUCTS

continued from page 85
600 volts in three ranges. Insulated test leads are disconnected when model 30 is set for AC current ranges. Optional accessories include a 0-1000 ohms plug-in adapter that is required for measuring resistance. The model can withstand momentary overloads and has an accuracy of 3% in all ranges. Frequency response of voltmeter is flat \pm 1% of full scale from 20 to 5000 Hz . Price is \$65.-Triplett Corp., Dept. PR, 286 Harmon Rd., Bluffton, OH 45817.

TOOL KIT, model JTK-24, is a miniature and subminiature tool kit designed for servicing, repair and assembly of precision electronic equipment. It contains more than 120 tools including screwdrivers, nutdrivers, pliers, wrenches, drills, hex keys and many more. These tools are useful for repair of many types of equipment such optical,

CIRCLE 156 ON FREE INFORMATION CARD
photographic, sound, broadcast and test equipment. Tools come in a $101 / 2 \times 121 / 2$-inch zippered case. Price is \$315.-Jensen Tools, Inc., 1230 South Priest Dr., Tempe, AZ 85281.

COLOR PATTERN GENERATOR, model 1250 , is designed as a test signal source for station CATV as well as for maintenance and troubleshooting of

The DR22-C

 Fully Synthesized General Coverage Receiver from McKAY DYMEK

FEATURES

- Shor twave, CB, ham radio, ships at sea, overseas phone calls, etc.
- High Impedance tuner output for Hi Fi System use.
- High level RF front end for excellent intermodulation rejection and sensitivity.
- Crystal filters in first and second IF amplifiers, ceramic filter in third IF.
- Quartz crystal tuning accuracy at all frequencies, no crystals to buy.
- Built in power supply for 110-120 or 220-240 VAC switchable, $50-60 \mathrm{~Hz}$. SPECIFICATIONS
- Frequency coverage:

50 kHz to 29.7 MHz , continuous. Digital synthesis in 5 kHz steps, fine tune for $\pm 5 \mathrm{kHz}$.

- Reception modes AM, upper sideband, lower sideband, CW.

| - Sensitivity for | | 100 kHz | 200 kHz | $400 \mathrm{kHz}-20 \mathrm{MHz}$ | $20 \mathrm{MHz}-29.7 \mathrm{MHz}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| for $10 \mathrm{dBS}+\mathrm{N} / \mathrm{N}:$ | CW, SSB | $5 \mu \mathrm{~V}$ | $1.5 \mu \mathrm{~V}$ | $0.5 \mu \mathrm{~V}$ | $0.75 \mu \mathrm{~V}$ |
| | AM | $10 \mu \mathrm{~V}$ | $3.0 \mu \mathrm{~V}$ | $1.0 \mu \mathrm{~V}$ | $1.5 \mu \mathrm{~V}$ |

- Selectivity: $-6 \mathrm{~dB} @ \pm 2 \mathrm{kHz}$ or $\pm 4 \mathrm{kHz}$ and $-60 \mathrm{~dB} @ \pm 5 \mathrm{kHz}$ or $\pm 14 \mathrm{kHz}$
- AM Harmonic distortion: 50% modulation $=0.6 \%$ T.H.D. 50% modulation $=0.6 \%$ T.H.D.
90% modulation $=1.5 \%$ T.H.D. (1 kHz modulation)
- Frequency stability: Within $\pm 40 \mathrm{~Hz}$ in any 8 hour period at a constant ambient of 25 C after 30 minute warm up.
- Circuitry: 43 integrated circuits, 18 transistors, 16 FETS and 54 diodes
- Dimensions \& Wt.: $(W \times D \times H) 17.5 \times 14.5 \times 5.1$ inches. Shpg. Wt. $19 \mathrm{lbs} .(8.7 \mathrm{Kg})$

McKay Dymek Company
111 South College Avenue
PO Box 5000
Claremont, CA 91711

For more information write or call today
Toll
800/854 7769
Calif. 800/472-1783

TWX 9105814990
Local Tel. 714/621-6711
video equipment. It generates the NTSC bar pattern with a -IWQ signal plus a full-screen color bar pattern. Other patterns include a staircase with selectable chroma levels, plus dot, crosshatch, center cross and color raster.

CIRCLE 157 ON FREE INFORMATION CARD
Model 1250 also produces a 4.5 MHz sound carrier or an external audio signal, and generates RF outputs on either Channel 3, 4, or the standard TV IF frequency. Operating manual is included. Price is $\$ 795$.-B \& K-Precision, 6460 W. Cortland St., Chicago, IL 60635.

PICTURE TUBE MACHINE, the latest in research and development, enables anyone to rebuild any CRT-color, black and white, 20 mm , foreign or domestic picture tube, in approximately two

CIRCLE 158 ON FREE INFORMATION CARD
hours. Complete information and literature avail-able.-Lakeside Industries, 4071 N. Elston Ave., Chicago, IL 60618.

DIGITAL PANEL METER, model B500, is a $31 / 2-$ digit meter containing 13 parts-one IC, 7 passive components and a display. The unit is bipolar, differential and features auto-zero. The input

CIRCLE 159 ON FREE INFORMATION CARD
range is from 50 mV to 1000 V . Requires either a 5VDC source or a $115 / 230$ VAC, $47-400 \mathrm{~Hz}$ source. It consumes $200-800 \mathrm{~mW}$ and its accuracy is $\pm 0.05 \% \pm 1$ digit. The red LED display is 5 inches high. Price is $\$ 49.00$. - International Microtronics Corp., 4016 E. Tennessee St., Tucson, AZ 85714.

R-E

TROUBLESHOOTING

continued from page 68
fed as a DC logic high to gate AND-1. (The other input of gate AND-1 is fed by the drum-rotation detector stage shown in Fig. 2.) A logic-high output goes to IC pin 15 when both detectors are working.

Near the end of the tape, the metallic strip severely loads down the Q of the supply-sensing coil. Oscillation stops, and the detector no longer sends a logic-high signal to the input of gate AND-1. A logic low goes to the autostop signal line and to gate AND-2 shown in Fig. 1.

Besides inhibiting any threading motion, the auto-stop signal triggers a driver stage that activates a STOP solenoid. The result is the same as you get from pressing the sTOP pushbutton-tape transport ceases.

Rewind switching connects takeupsensing coil L6502 into the oscillatorfeedback loop. Again, as long as regular tape moves past the coil, the oscillator supplies a signal to the detector and (thus) a DC logic signal to gate AND-1. But when the metallic leader moves alongside the coil, the oscillation is loaded down and stops. A logic low at the input of gate AND-1 places a logic low on the auto-stop signal line.

You have already seen how the drumrotation detector works. If the videohead drum stops spinning, the pulse generator that is a part of the drum immediately stops generating a signal. The sensing stages no longer produce logic high for gate AND-1. Again, a logic low on the auto-sto signal line triggers the STOP solenoid and also (through gate AND-2) inhibits any threading (or unthreading) activity.

Dew sensor-Not all Beta machines include this protective system. It keeps the mechanism from operating if moisture has condensed in the works (that could damage tape seriously). Figure 5 is the diagram of the dew-sensing stage used in one Toshiba model.

The sensor itself is a resistance that decreases in value (generally to below 500,000 ohms) when moisture forms on its probes. The sensor is part of the feedback circuit in a dew-oscillator stage. No oscillation takes place as long as the sensor resistance is high. As the resistance lowers, the feedback becomes sufficient to start the oscillator.

Network R832-C820 feeds the oscil-lator-output signal to rectifiers D802D803. Filter capacitor C819 charges to a negative DC value (note the orientation of the diodes). This negative voltage "bucks" to zero the normal logic high that is fed to the base of Q803 through R830.

A logic low at the base of Q803 creates a logic high at the collector,
and then again a logic low at the collector of Q804. We know that a logic low on the auto-stop line to the stopsolenoid driver causes the solenoid to activate. The same logic low from Q804 goes to gate AND-2 and inhibits the threading system.

In the Toshiba model, the reed switch on the tape-slack detector arm is also connected at the base of Q803. Any slack in the tape closes the switch and plunges the Q803 base to a logic low. Transistor Q803 generates a logic high and transistor Q804 generates a logic low. The STOP solenoid is activated, and threading is inhibited too.

Now that we've examined the electronics, we'll break off this issue in order to give you time to digest what you have learned. Next time we'll take a close look at the electromechanical systems.

FOR THOSE ON THE GO FROM...

THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Dupont Avenue • Cleveland, Ohio 44108
(216) $541-8060 \quad$ TWX: $810-421-8286$

stereo producis

More information on stereo products is available. Use the Free Information Card inside the back cover.

PHONO CARTRIDGE, model M95HE, is a top-of-the-line phono cartridge incorporating a hyperelliptical nude diamond-tip stylus (model N95HE) that provides up to 25% reduction in distortion, and is also used with the model V15 Type

CIRCLE 131 ON FREE INFORMATION CARD
IV cartridge. The model M95HE features an ultra-flat frequency response, light trackability and tracks at between $3 / 4$ and $11 / 2$ grams. Suggested retail prices: M95HE, \$89.50; N95HE stylus, \$34.-Shure Brothers, Inc., 222 Hartrey Ave., Evanston, IL 60204.

GRAPHIC EQUALIZER, model GEM- 1 , is a five-band-per-channel instrument featuring center-

CIRCLE 132 ON FREE INFORMATION CARD
detented linear controls, three tape-deck switches for record equalization, playback equalization and tape monitor, and a separate power supply for low noise. Model GEM-1 also uses a system in which the user contours cards for a specific equalization setting. When a card is moved up the faceplate of the unit, all the frequency controls are automatically positioned. Another feature is narrow-bandwidth circuitry for minimum adjacent band interaction. All components are

ONLY Vector kits contain:

- Positive photo-resist coated AND uncoated copper laminate-no messy photo-reversal-no spraying, dipping, or baking.
- 4 types of art aids: rub transfers, ink, tape, cut and peel-use 1 or all. - 1:1 circuit art rub transfers-IC sets, pads, lines, connectors, symbols, letters, and numbers.
- Everything included-just add water and sunlamp or bright sunshine.
- Liquid etchant and developer-no dry chemical mixing problems.

AND
AND
Make circuit on film, expose, develop and etch for 1 or many cards.

$$
\begin{array}{|c|c|}
\hline \text { ART } \\
\text { AIDS }
\end{array}+\text { mylar }+ \text { sunlamp }+\frac{\text { developer }}{\text { silm }} \mathcal{\text { dards }}+1 \text { or many PC's }
$$

32XA-1 kit makes 7 PC cards. $\$ 28.00$. 32 X -1 starter kit makes 2 cards. $\$ 11.50$ if not available locally factory order-include $\$ 3.00$ shipping, U.S. only Vector Electronic Co., 12460 Gladstone Av., Sylmar, CA 91342 S10177

USE
YOUR
READER
SERVICE
CARD
mounted on a single glass epoxy PC board. Frequency response is 10 Hz to $150 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ Suggested retail price is $\$ 89.95$.-Superex Electronics Corp., 151 Ludlow St., Yonkers, NY 10705.

PERCUSSION SYNTHESIZER, the Drum 5700, is a versatile instrument that uses continuously variable controls for pitch modulation-up or down, oscillator waveform mix, noise filter frequency and oscillator/noise mix. It features modular construction which allows it to configure any size drum set, and numerous rear panel patching and control points which allow multiple cards to be cascaded for a wide range of effects.
Other features include an encapsulated sensor that can be mounted permanently or temporarily to a drum set, and an optional cancel switch that

CIRCLE 133 ON FREE INFORMATION CARD
disables the synthesizer when not in use. Price is $\$ 59.95$ for a kit; assembled units are also avail-able.-PAIA Electronics, Inc., 1020 Wilshire Blvd., Oklahoma City, OK 73116.

DIRECT-DRIVE TURNTABLE, model 650 RC, is an automatic single-play turntable that can be operated in automatic, semiautomatic and manual modes, and has remote-control capability (optional). The turntable features a high-torque DC motor, an ultra-low-mass (ULM) tonearm (with optional ULM cartridge), gimbal suspension, pitch control, cue control, antiskating control and

CIRCLE 134 ON FREE INFORMATION CARD
an aluminum platter. The turntable comes complete with cover and base, and sells for a suggested retail price of under $\$ 400$. Optional cartridge, model 55E, \$110; and infra-red remote control, model RC 152, \$79.95.-United Audio Products, 120 So. Columbus Ave., Mt. Vernon, NY 10553.

SPEAKER SYSTEMS, a line of four speakers feature a unique total motor system that results in a higher than normal efficiency for acoustic suspension speakers. The 8 -inch 2 -way system, model 94-1200, is a lightweight compact speaker rated at 25 watts RMS with a frequency response of 45 to $20,000 \mathrm{~Hz}$. The 10 -inch 2-way system model 94-1300, features a 10 -inch woofer and

CIRCLE 135 ON FREE INFORMATION CARD
wide dispersion and is rated at 35 watts RMS. The 10 -inch 3 -way system, model 94-1350 (shown), handles a power of 40 watts RMS; the 12 -inch 3 -way system, model $94-1400$, has a 12 inch woofer, $41 / 2$-inch midrange, is rated at 45 watts RMS and has a frequency response of 35 to $20,000 \mathrm{~Hz}$. Prices range from $\$ 59.95$ to $\$ 99.95$.GC Electronics, 400 So. Wyman St., Rockford, IL 61101.

R-E

COLOR-BAR GENERATOR

continued from page 71
Even video cameras may be tested with the model 1250. You can switch to an external video input signal by just pulling out the center knob of the RF switch. Feed the camera output signal into the EXt video in on the rear panel and you can see the results on a video monitor or color TV set.

Also on the rear panel is a BNC output jack for the 3.579545 subcarrier. A frequency counter can be connected there to check the frequency, or the signal can be used for synchronizing other circuits. The signal is at the 1.0 volt level with no load and is matched for a 75 ohm input impedance.

The model 1250 is an accurate and very versatile piece of electronic equipment for any serious video engineer, technician, or anyone else in the field. It can be used for many tests in CATV and MATV systems, and also for closed-circuit TV systems. Up to now, equipment of such accuracy has been far too expensive for the average TV shop, and also too big to fit comfortably on the service bench.

The model 1250 is only a bit more than 4 inches tall and 17.5 inches wide. The jacks that you will use most often are on the front panel. All of the controls are conveniently arranged, which makes the model 1250 a very easy instrument to operate quickly.
All of the RF and IF signals are crystal controlled for greater accuracy. Each one has its own crystal oscillator for maximum stability. The sync-generator circuitry uses the latest LSI circuit design. A single integrated circuit generates all of the sync signals, again to strict NTSC standards. Even the newer TV receivers, which use a count-down IC to develop the
sync signals will work here. Every one of the outputs of the model 1250 may be used at the same time. You could drive a video monitor with the video output and at the same time feed RF signals to a color TV set!

There's one other thing you can do with it, too. If you run into the hypercritical customer who insists that a problem is in his TV set (and you are almost sure that it is either a network goof or a local TV station goof!), you can show him that his set will indeed make the standard patterns and tell him that this is the kind of equipment that the TV station ought to be using!

R-E

More premium quality features per dollar than any other hand-held $31 / 2$ DMM! The only one with built-in test socket for transistor $h_{\text {FE }}$. Side switches for easy one-hand use. Auto polarity/zero. Large $0.5^{\prime \prime}$ LCD digits. Resolution down to $100 \mu \mathrm{~V}$. Accuracy
better than $0.8 \% \mathrm{DCV}$. $10 \mathrm{M} \Omega$ input impedance. Full overload protection. All functions color coded. Complete with battery, deluxe test probes and spare fuse. HV probe, multiplier resistor and "LED head" continuity probe available.

0.1\% Accurate DMM WD-759 \$159.95

Want top quality? Here's the only hand held 312 DMM with full info LCD readout: Function (V, A or Ω), Amount (numeric value) and whether AC or DC. Also the only one with full range high and low power ohms. Features auto polarity/zero, RF shielding, recessed input jacks, high impact case with front guard rail that protects against damage if dropped face down. Supplied with battery, tilt stand, spare fuse (stored inside case). Deluxe test probes have dual banana plug, alligator clip and "no-short" probe tip. Full one-year warranty. AC adapter, "LED-head" continuity probe and carry case available.
Lab accuracy WD-758 with LED readout \$149.95

See your VIZ distributor
Ask about the 7 VIZ bench
DMMs with prices to $\$ 359$
VIZ
VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144
Over 70 test instruments in the line

1
Kleps $10-20$

KIeps 30

Pruf 10

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long
Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
Kleps 40. Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long.
Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long.
Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.

Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:

RYEINDUSTRIESINE.

130 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd. CIRCLE 35 ON FREE INFORMATION CARD

4BG20 SUBURBAN

One of many RCA Permacolor Antenna models available.

Insulator design locks elements for top performance and long life.

They'll bring in a better sales and profit picture for you.

The RCA name and tradition assure your customers that the highest quality and performance are built into these great Permacolor TV Antennas. And they're absolutely right.

RCA's Permacolor Outdoor TV Antennas have advanced engineering features that offer the best possible reception in almost any area - from deep fringe to metropolitan locations.

They're the first antennas with solid, permanent connections from elements to feed line. The first antennas with elements permanently riveted to pivoting polypropylene insulators. And, the first with a weather-resistant blue and gold vinyl finish.

RCA's Permacolor line is a complete line consisting of: 10 UHFVHF/FM all band combo models, 7

VHF/FM models, 5 UHF models, an FM only model, and a selection of 75 ohm and 300 ohm antenna kits. Plus the amazing Mini-State - the first truly miniaturized rotating antenna system.

Once your customers get the picture with these advanced Permacolor Antennas, they'll never be satisfied with anything less.

For full information, see your RCA Distributor or write to: RCA Distributor and Special Products Division, Deptford, N.J. 08096, Attn: Sales Promotion Services.

School in San Francisco, and has spent over 17 years as a printed circuit draftsman, designer, and PC supervisor in the commercial and military electronics field.
The book includes chapters on schematics, PC board layout ground rules, discrete components layout, mounting components, IC grouping, digital layout, multi-layer PC boards, production considerations, artmaster tape-up, ground planes, familiarization with fabrication and assembly drawings, silkscreen drawings and artmasters, the manufacturing process of PC boards, and logic as it relates to PC design reference materials. There are over a hundred clear "how to" diagrams and charts.

OSCILLOSCOPE APPLICATIONS \& EXPERIMENTS, by Edward M. Noll. Howard W. Sams \& Co., Inc., 4300 West 62 nd St., Indianapolis, IN 46268. 223pp. $51 / 4 \times 83 / 4 \mathrm{in}$. Softcover. $\$ 8.95$.
For both the neophyte and the advanced technician, this book covers the entire range of oscilloscope application fundamentals and technics. After a chapter on basics there are two chapters dealing with oscilloscope applications in audio. AM/FM receivers, and TV receivers. The fourth chapter emphasizes two-way radio applications, particularly in reference to modulation checks and waveform analysis. The last two chapters go into the dualtrace oscilloscope and applications in digital electronic circuits. Each chapter in the book includes suggested learning experiments. They will aid in developing new skills necessary to make the most effective use of the modern oscilloscope.

HANDBOOK OF ELECTRONICS CALCULATIONS FOR ENGINEERS AND TECHNICIANS, Edited by Milton Kaufman and Arthur H. Seidman. McGraw-Hill Book Company, 1221 Avenue of the Americas, New York, NY 10020. 668pp. 6×9 in. Hardcover; $\$ 24.50$.

Each of the 24 chapters in this handbook is written by an expert in its particular area, and the volume as a whole covers around 500 worked-out problems ranging from microprocessors to thick-film technology. There are over 700 illustrations.
The subjects covered are: Technical math review, DC circuit analysis, AC circuit analysis, Selecting R, L, and C components. Selecting semiconductor devices, audio amplifiers, tuned amplifiers, feedback, oscillators, power supplies, batteries and special skills, op amp applications, digital logic, com-puter-aided circuit design, analog-to-digital conversion, video amplifiers, microprocessors, transmission lines, filters, antennas, microwaves, communications systems, measurements, and thick-film technology. There are also 23 pages of appendices, and an index. The publishers state that the present volume is the first fully comprehensive electronics handbook that can help you solve the day-to-day problems of electronics engineers and technicians in a practical way.

Pruf 10

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long.
Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
KIeps 40 . Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long.
Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $4 \frac{1}{2 \prime \prime}$ long.
Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.

Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 Available through your local distributor, or write to.
RYEINDUSTRIESINC.
130 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd.
CIRCLE 35 ON FREE INFORMATION CARD

Price Without Sacrifice.
 HITACHI V-302 \& V-152

Put a proven Hitachi dual-trace oscilloscope on your bench for as little as $\$ 695$. Our V-152 15MHz model includes unprecedented sensitivity ($1 \mathrm{mV} /$ div.)...10X sweep magnification...front panel XY operation...trace rotation... Z-axis input...and more. Need greater bandwidth? Our V-302 model is the only 30 MHz dual-trace scope with signal delay line priced under $\$ 1000$, with all the above features, to make your testing operations fast, easy, and accurate. Reliability is exceptional, too. (As you'd expect from a manufacturer with over 20 years of experience "outscoping" the competition.) So exceptional, in fact, that Hitachi quality is backed by a 2 -year warranty...the longest in the industry. Whether you use it for teaching or repairs, for video, audio, or computer testing, you can't find more scope for your dollar than at Hitachi. Write for more details.

Hitachi...The measure

 of quality.- V-152 15 MHz Dual Trace
\$695*
V-302 30 MHz Dual Trace
\$945*
*Probes included.

Woodbury, NY 11797
(516) 921-7200

nimanket centien

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.50$ per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85 c per word . . . no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at $10 \$$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 26 th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.

EDUCATION \& INSTRUCTION

UNIVERSITY degrees by maill Bachelors, Mas ters, Ph'D's . . . Free revealing details. COUNSELING, Box 317-RE4, Tustin, CA 92680

BROADCASTING! Start your own radio station at home, school, church! Become a DJ! Free information. "BROADCASTING", Box 130-F4, Paradise, CA 95969

MAKE Hydrogen fuel: Build Generators with material from Hardware stores. Illustrated Manual; $\$ 10.95$ ppd. NEGEYE ENGINEERING, Pennsboro, WV 26415
HOME study degree program in electronics engineering. 75 specialized courses also available. For information write: CIEE, P.O. Box 9196 , Pittsburgh, PA 15224
AVIONICS Aircraft Electronics. Accredited School. Excellent employment opportunities AERO TECHNICIANS, P.O. Box 7 RE, Rexburg ID 83440

GRAPHIC EQUALIZER

TWELVE bands/channel $\$ 100$ kit. still available; see May 1978 R/E cover story or write: SYMMETRIC SOUND SYSTEMS, 912 Knobcone Place, Dept. R, Loveland, CO 80537

WANTED

MARCHANT mechanical calculator Model 10MR, \$100.00. LEONARD WOODALL, 3811 Dempster, Dallas, TX 75211

SATELLITE TELEVISION

SKYVISION-The monthly magazine of home satellite television reception. 12 monthly issues only \$12. Send to: SKYVISION, P.O. Box 10017. Chicago, IL 60610
GEOSTATIONARY satellites, present and future, found for your location. $\$ 2.00$ with longitude-latitude, $\$ 3.00$ without. For free sample, send selfaddressed stamped envelope. SAT-FIND, Box 524 , North Amherst, MA 01059

ELECTRONIC MUSIC

ELECTRONIC music and home recording in Polyphony magazine. Advanced applications, interviews, projects, computer music. Sample, $\$ 1.50$. Subscription (6 issues), $\$ 8$ US $/ \$ 10$ foreign. POLYPHONY, Box R20305, Okla. City, OK 73156.

MICRO COMPUTERS

TRS-80 micro computers by Radio Shack at 15% discount. Also have software for business systems. MICRO MANAGEMENT SYSTEMS, Downtown Shopping Center Plaza, Cairo, GA 31728 (912) 377-7 120

$\begin{array}{ll}\begin{array}{l}\text { HIGHLY } \\ \text { PROFITABLE } \\ \text { ELECTRONIC }\end{array} & \text { ONE-MAN } \\ \text { FACTORY }\end{array}$

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business Write today for facts ${ }^{\prime}$ Postcard will do. Barta-RE-B, Box 248, Walnut Creek, CA 94597.

TELEPHONES

ELECTRONIC telephone ringer replaces harsh annoying bells, $\$ 12.50$. Holdbutton for single-line phones-at last! \$19.95. Catalog of other telephone items $\$ 1.00$. CONSUMERS' TELEPHONE, 69-A Smith St., Glen Head, NY 11545

INVENTIONS

INVENTORS: if you have an invention for sale or license, write for free booklet explaining how we can help you. KESSLER SALES CORP. C-314, Fremont, Ohio 43420.

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write:BUSINESSES, 92-R, Brighton 11 th, Brooklyn, NY 11235
NEW tax loopholes discovered. Everyone eligible. Unique ideas. Free facts. ULC, Box 359 BC, Clarkston, GA 30021

There just isn't enough room . . .

Limited space prevents the listing of the many hundreds of TV \& Stereo parts we stock. This page contains just a few of the low, low priced replacement parts we keep in our huge inventory, at the lowest prices you'll ever find! For our complete parts listing, call our toll-free number listed below, or write for our free 24 -page catalog.

Tube Number	10-up	1.9	Tube Number	10-up	1.9	Tube Number	10-up	1.9
1V2 $2 A V 2$ 3A3 3AW3 3 CY 3 3 HA 5 3HM5 5GH8A 5 U 4 6AQ5 6AU6 6AW8A 6BA11 6BK4 6BL8/ECF80 6CJ3 6DW4 6EJ7/EF184	.95 1.15 1.50 1.50 1.60 1.60 1.40 1.40 1.75 1.20 1.20 1.20 1.60 1.85 2.75 1.05 1.40 1.40 1.40	$\begin{aligned} & 1.10 \\ & 1.35 \\ & 1.70 \\ & 1.70 \\ & 1.85 \\ & 1.85 \\ & 1.60 \\ & 1.60 \\ & 1.95 \\ & 1.40 \\ & 1.40 \\ & 1.40 \\ & 1.90 \\ & 2.05 \\ & \hline .15 \\ & 1.20 \\ & 1.60 \\ & 1.60 \\ & 1.60 \end{aligned}$	6EL4 6FQ5 6FQ7/ECG7 6GF7A 6GH8A 6GM6 6GU7 6 HA5 6 HB 7 6 HM 5 6 JIO 6JE6 6JS6 6KD6 6L6GC 6LB6 6LQ6 6 Z10	1.45 2.75 2.15 1.15 1.95 1.15 1.55 1.55 1.45 1.45 1.45 2.30 3.10 2.80 3.20 2.30 3.00 3.10 2.20 2.30	1.15 3.15 2.35 1.30 2.25 1.35 1.80 1.80 1.60 1.60 1.60 2.60 3.50 3.10 3.60 2.60 3.45 3.50 2.50 2.60	8AW8 8 FQ7 8CG7 12AU7A/ECC82 12 AV6 12 AX7IECC83 12GN7 12 HG 7 13GF7A 17 BF 11 17 JZ8 ${ }_{2} 24 \mathrm{JE6} 6$ ${ }^{31} 3 \mathrm{JS6}$ $33 \mathrm{GY7}$ 38 HK7 $40 \mathrm{KD6} / 36 \mathrm{KD6}$ 50 C 5		$\begin{aligned} & 2.65 \\ & 1.25 \\ & 1.25 \\ & 1.30 \\ & 1.25 \\ & 1.30 \\ & 2.35 \\ & 2.35 \\ & 2.20 \\ & 3.10 \\ & 1.85 \\ & 3.95 \\ & 3.45 \\ & 3.10 \\ & 2.80 \\ & 3.15 \\ & 3.10 \\ & 3.55 \\ & 1.30 \end{aligned}$

Call These Toll-Free 24 Hour Hot Lines

PLANS \& KITS

ELECTRONIC organ kits. The ultimate design. Sounds like a pipe organ. Build it to sell or build it to keep. Models for churches, homes, clubs, pizza parlors. Send $\$ 1.00$ for demo record and catalog. DEVTRONIX, Dept. 70, 6101 Warehouse Way, Sacramento, CA 95826
PRINTED circuit boards from sketch or artwork. Kit projects. Free details. DANOCINTHS INC., Box 261, Westland, MI 48185
SPEAKERS. Save 50%. Build your own speaker system. "Free catalog" write: MC GEE RADIO, RE 1901, McGee Street, Kansas City, MO 64108 COPY Television Satellites! Parabolic screen mesh dish kits. Pre-cut ready to assemble. 8, 12, and 16 foot sizes available. Reasonable prices. Send SASE for details. MARBLE COMPANY, 32 Sea Street North, Weymouth, MA 02191
LASER plans using laser diode $1-1200$ watts (specify) $\$ 4.00$. Catalog $\$.50$. LASERTRONICS (1), 12320 SW Spring, Portland, OR 97225

DIGITAL auto compass, eight LED direction indicators, three digit heading readout. Information $\$ 1.00$, complete plans $\$ 3.50$. TS RESEARCH, 2301 East Ball Road, c/o Office; Anaheim, CA 92806
NEGATIVE ion generator plans, $\$ 4.00$. Kits, other plans available, free list. STARWIND, Box 712, Goleta, CA 93017.

NEGATIVE ion generator plans. Build it yourself with easy-to-get parts, save up to 75%. Includes ozone check. $\$ 5.00$ to LUNATRIX, Box 891, Yucaipa, CA 92399

USE your talent, build burglar alarms, plans $\$ 3.50$. DANNY MOWER, Route 2, Box 460-D, Concord, NC 28025

SOUND effects. Greatly expand the use of your tape recorder and creativity. Echo, reverb, dubbing, time delay. Demo tape $\$ 5.00$, plans $\$ 7.50$ SOUND EXPANSION, Box 336, House Springs, MO 63051

SATELLITE TV FOR THE HOME
 Our receiver lets you get over 75 channels of television directly from earthorbiting cable TV satellites!: HBO, Showtime, super sta tions, sports and movies from around the world.

Sick of Network TV?

 Buy Complete or Build our kit and save!Our 24-channel receiver provides "studio quality" TV reception. Easy to install! Ultra low power consumption! Briliant color! Works anywhere! FCC licensing no longer required. Order today!

Complete details covered In our Home Earth Station manual. Send $\$ 7.95$ today (refundable against any purchase), or call:

24-hour C.O.D. Hotline (305) 869-4283
 SPACECOAST RESEARCH

Dept. T, P.O. Box 442, Altamonte Springs, FL 32701

INSTRUCTIONS and PC negatives, frequency counter $30 \mathrm{MHz} \$ 5.00$, clock 4 digit $\$ 2.50$. RCS ENTERPRISES, Box 488, Sierra Vista, AZ 85635
SATELLITE TV antenna build for $\$ 300$. Detailed plans \$30. NUMAN ENTERPRIZES, Rt. 1, Box 357, Jonesboro, TE 37659

MONITOR radiation, not a geiger counter, LED readout, complete plans and B/M. $\$ 7.00$, RADTECH ENGINEERING, P.O. Box 42804, Houston, TX 77042
BUGS. Build professional miniature FM transmitters. Plans $\$ 5.00$. Money-back guarantee. PCEP ENTERPRISES, Box 837-A, New York, NY 10004
EINSTEIN superCeded! Free! 408 Vermont, Daytona, FL 32018
WIRELESS control telephone tape recording device. Records conversations turning tape recorder on and off automatically. No connection to telephone. Information $\$ 4.00$. Send to: MAHONE, P.O. Box 2366, San Jose, CA 95109

AMAZING ELECTRONIC PROJECTS and PRODUCTS: Lasers Super Powered, Burning. Cutting, Ritle, Pistol Pocket. See in Dark-Shotgun Directional Mike-Unscramblers-Giant Tesla-Stunwand-TV Disrupttritying, Ultrasonic, CB, Auto and Mech. Devices, Hundreds More-All New Plus INFO UNLTD PARTS SERVICE. Catalog \$1. Information Unlimited, Dept. R8 Bo 716 Amherst, N.H. 03031.

FOR SALE

RADIO \& TV tubes $49 ¢$ each. One year guaran teed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

SCANNER/monitor accessories-kits and factory assembled. Free catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520
FREE catalog, IC's, LED's, semi's, parts. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada H3C 1H8. U.S. inquiries.
RECONDITIONED test equipment. \$1.00 for catalog. JAMES WALTER TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806

SAVE up to 50% on name brand test equipment. Free catalog and price list. SALEN ELECTRONICS, Box 82-M, Skokie, IL 60077

GET IT ATT, Subscribe today, and don't miss a single issue.

When you subscribe to the best electronics magazine of all-Radio-Electronics-you're making sure that you'll get all the news of electronics you want, every month from now on. Issue after issue, you'll get equipment news, test reports, projects to build, computer technology, servicing tips and more, including regular columns on computers, solid state, hi-fi, hobbies and servicing. And every one is written by the experts, the outstanding authorities in the most exciting, fastestgrowing field in the world todayelectronics.

And...you save money, too, as much as $\$ 5$. off the newsstand price of Radio-Electronics when you select one of the subscription offers listed on the handy coupon. More important-you'll be assured of having your copy reserved, even if it runs out on the newsstands. You save money and time. Make sure you get all the excitement in every issue of Radio-Electronics, every month, by filling in and mailing the coupon, today
$\square 2$ Years- $\mathbf{2 4}$ issues ONLY \$25.00
(Save More! $\$ 5.00$ off newsstand price.)
\square Payment enclosed
Bill me
Extra Shipping: Canada $\$ 3.00$ per year all other countries $\$ 5.00$ per yea Mail to: Radio Electronics SUBSCRIPTION DEPT.. PO. BOX 2520, BOULDER, COLO. 80322
 Largest Zilog Inventory

Z80-CPU	2.5 MHz	$\$ 9.95$	280-DMA	2.5 MHz	$\$ 26.85$							
Z80A-CPU	4.0 MHz	11.95	Z80A-DMA	4.0 MHz	33.60	$\begin{array}{llllll} \\ \text { Z } 80-\mathrm{PlO} & 25 \mathrm{MHz} & 7.20 & \text { Z80-S10/O } & 25 \mathrm{MHz} & 38.60\end{array}$	Z80-P1O	2.5 MHz	7.20	Z80-S10/O	2.5 MHz	36.00
:---	:---	:---	:---	:---	:---							
Z80A-P1O	4.0 MHz	8.40	Z80A-S1O/O	4.0 MHz	39.50		z80-CTC	2.5 MHz	7.20	Z80-S1O/1	2.5 MHz	36.00
:---	:---	:---	:---	:---	:---							
Z80A-CTC	4.0 MHz	8.40	Z80A-SIO/1	4.0 MHz	39.50	$\begin{array}{lll}\text { Z } 880-\mathrm{SIO} / 2 & 2.5 \mathrm{MHz} & 36.00 \\ \text { Z } 80 \mathrm{~A}-\mathrm{SiO} / 2 & 4.0 \mathrm{MHz} & 39.50\end{array}$						

MICROPROCESSOR CHIP SETS

METAL POWER TRANSISTORS

 Homotaxial - Best Quality| Homotaxial - Best Quality | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 2N3054 | .65 | 60 V | NPN | TO-66 |
| 2N3055 | .69 | 70 V | NPN | TO-3 |
| 2N3442 | 1.50 | 160 V | NPN | TO-3 |
| 2N3771 | 1.95 | 50 V | NPN | TO-3 |
| 2N3772 | 1.95 | 100 V | NPN | TO-3 |
| 2N3773 | 2.50 | 160 V | NPN | TO-3 |
| | Universal SCR | | | |
| C106D | .34 | 400 V | 5.0 AMP | TO-220 |
| | | | | |

EPROM'S

$\begin{array}{lll}c_{2} 2708 \\ 1 K \times 8 & 450 \text { ns }\end{array}$
TMS2716
$16 \mathrm{~K}(2 K \times 8) \quad 450 \mathrm{n}$
 (3 power supplies) T.I. Version
C2716/TMS 2516
$16 \mathrm{~K}(2 \mathrm{~K} \times 8) 450 \mathrm{~ns}$
(Single 5 V supply - Intel version)

Special of the Month
 Special of t

LINEAR I.C.'s

LINEAR I.C.'s			
LTM301N-8	${ }_{29}^{34}$	${ }_{\text {LTM }}^{\text {LTOCN }}$-14	1.29
LM307N.8	${ }_{95}^{29}$		${ }_{59} 19$
Lm311N-8	59	LM748CN-8	39
LM324N	59	teabiodas	1.29
LM339N	98	LMM 4 Sen ${ }^{\text {a }}$	49
	${ }^{59}$	LMM 4 288N 14	. 69
LM5550.8	. 59	L-M3035N-4	. 99
	49		
	${ }_{1.25}^{49}$	LM4 $136 \mathrm{~N}-14$	0

SOUND \& MUSIC GENERATOR I.C.

Creates almost any type of sound, from music gunshots and explosions. High level op amp
output. 28 pin DIP. Operates from one 9 V battery output. 28 p
With data.
"Lowest Price Offered Anywhere SN76477N (. $600^{\prime \prime}$ centers) SN76477NF (400° centers) New small package C2708-65/4

1980 IC MASTER
JUST RELEASED over 2700 PAGES Complete integrated circuit data selector. Master guide to the latest
I.C.'s including microprocessors and consumer circuits. 45,000
 n on MPU boards 8 Systems.
Free Quarterly
Updates
\$75.00
Special \$59.95
$\$ 9.95$
$\$ 24.95$

MOS MEMORIES

${ }_{1 K}^{2101}(256 \times 4) 350 \mathrm{~ns} 22$ PIN 2102LFPC
$1 \mathrm{~K}(1 \mathrm{~K} \times 1)$

1) Low Power 350ns 16 PIN 2102LHPC
$1 \mathrm{~K}(1 \mathrm{~K} \times 1)$ Low Powor
High Performance 250 ns 16 PIN $2102-1 \mathrm{PC}$
$1 \mathrm{~K}(1 \mathrm{~K} \times 1) 450 \mathrm{~ns} 16 \mathrm{PIN}$ $2102-2 \mathrm{PC}$
$1 \mathrm{~K}(1 \mathrm{~K} \times 1) 650 \mathrm{~ns} 16 \mathrm{PIN}$
P211-25
1K (256×4) 250ns 18 PIN
P2112-35
1K $(256 \times 4) 350 \mathrm{~ns} 18$ PIN
2114L
Low Power $4 \mathrm{~K}(1024 \times 4) 300 \mathrm{~ns}$
MOS Dynamic RAM's
$\$ 29.95$
$\$ 6.90$

TMS $4060-30$
$4 \mathrm{~K}(4 \mathrm{~K} \times 1) 300 \mathrm{~ns} 22$ PIN TMS $4060-20$
$4 \mathrm{~K}(4 \mathrm{~K} \times 1)$
200 ns 22 PIN

AY5-1013A
0 to 40 K BAUD 40 PIN
AY3-1015
0 to 30 K BAUD 40 PIN Single 5V supply
IK CMOS RAM
5101
$1 \mathrm{~K}(256 \times 4)$
450 ns 22 PIN Low Power
4 K CMOS RAM
P4315-45L $4 \mathrm{~K}(4 \mathrm{~K} \times 1) 450 \mathrm{~ns} 18 \mathrm{PIN}$
SHIFT REGISTERS
3341 PC FIFO 700 KHz
3341 APC FIFO 1 MHz
3342PC 64 Bit Shift Register
3347PC 80 Bit Shitt Register
10410ADC/HM2105 ECL RAM
10410ADC/HM2106
256×1 Bit Fully Decoded 15 ns 16 PIN Special 1.95

5 Synertek ${ }^{\circ}$ sYM
Rockwell International AIM65 $\$ 375.00$ As a learning aid AIM65 gives you an
assembled, tested and warranted R6502 assembied, lested and warranted R6502 keyboard, an alphanumeric 20 character display and uniquely, an alphanumeric 20 column thermal printer. An on boar Advanced interiace Monitor program provides extensive control and prog
development functions. 1K RAM.

Fully assembled, tested $\quad \mathbf{\$ 2 3 9 . 0 0}$ microprocessor. 6 -digit hex LED display. KIM-1 hardware cormpatibility. Single plus $5 V$ power requirements.
Lie Texas Instruments TM990/189
UNIVERSTY MODUE A comprity mODULE A complete learning aid that in conjunction with the Tutorial Text offers
hands on experience with microprocessors, IO, memory and assembly language programming. Oflers advanced features such as 45 key
alphanumeric keyboard, a powertul instruction set, multiply and divide alphanumeric keyboard, a powerful instruction set, multiply and divid
vectored interrupts, single bit I/O manipulation parallel I/O and 7 addressing modes.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{L.E.D. LAMPS} \\
\hline LED209 \& \multicolumn{3}{|l|}{T. 13 mm Red} \& . 09 \\
\hline LED211 \& \multicolumn{3}{|l|}{\begin{tabular}{l}
T-1 3 mm Green \\
T .13 mm Yellow
\end{tabular}} \& 19
14 \\
\hline LED220 \& \multicolumn{3}{|c|}{T-13/5 mm Red} \& . 11 \\
\hline LED222 \& \multicolumn{3}{|l|}{T-1/3 5 mm Green} \& .24
.16 \\
\hline LED224 \& \multicolumn{3}{|c|}{\(\mathrm{T}-1 \% / 4 \mathrm{~mm}\) Yellow} \& .16 \\
\hline FND357 \& \multicolumn{3}{|l|}{75 Common Cathode} \& 1.09 \\
\hline FND367 \& \& \multicolumn{2}{|l|}{Common Cathode} \& 1.29 \\
\hline FND500 \& .500 \& \multicolumn{2}{|l|}{- Common Cathode} \& 1.09 \\
\hline FND507 \& \multicolumn{3}{|l|}{\({ }^{500^{-}} \mathbf{}\) Common Cathode} \& 1.09 \\
\hline FND560 \& \multicolumn{3}{|l|}{\(500^{-}\)Common Cathode} \& 1.29 \\
\hline FND567 \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{500 \({ }^{-1} \begin{aligned} \& \text { Common An } \\ \& \text { (high brightne }\end{aligned}\)}} \& 1.29 \\
\hline \& \& \& \& \\
\hline DL704 \& \multicolumn{3}{|l|}{300
300
300

Common Con Anode} \& 1.29

\hline DL77
DL747 \& 300^{-}
630 \& Common Anode \& \& 1.29
2.29

\hline \& \multicolumn{3}{|c|}{ISOLATORS} \&

\hline 12.074 \& Dual \& Opto isolator \& 1500 V \& 1.29

\hline $1 \mathrm{LO74}$ \& Quad \& Oplo isolator \& 1500 V \& 3.95

\hline MCT6 \& Dual \& Opto Isolator \& 1500 V \& 1.29

\hline TILI11 \& Opto \& Coupler \& 1500 V \& . 69

\hline 4 N 26 \& Opto \& solator \& 2500 V \& . 59

\hline 4N28 \& Opto \& solator \& 500 V \& . 59

\hline 4N29 \& Opto \& solator \& 2500 V \& . 69

\hline 4N32 \& Opto \& solator \& 2500 V \& . 69

\hline
\end{tabular}

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

MONO

AUTOMATIC RADIO
MADE BY THE AUTO RADIO

AM-FM-MULTIPLEX
 No. 5744 W
BELIEVABLE
FACTORY CLOSEOUT! - One of America's largest independent manuracturers of automobile radios has
iven up which we announced in Nov. 1979 Radio given up which we announce in Nov, 1979. Racio
Electronics $\&$ Popular Electronics magazines). We've
been fortunate in acquiring more of the been iortunate in acquiring more or the last auto ra
dios in production. These are AM-FM-MPX-Stereo sets...designed for new cars. All are tested 100%
operational and come with knobs $\& 5$ push buttons. operational and come with knobs $\& 5$ push buttons.
Ideal for installing in your auto, van camper, boat Ideal for installing in your auto, van, ca
or any other place 12 VDC is available. - Auto stereo has become as sophistican spend $\$ 300$ for simple components- which mean stereo can be out of reach for many folks and 2nd cars. If you want a stereo sound system, you can
start with the purchase of a $\$ 100$ radio for only a mere $\$ 19.95$ at Delta. The radios are designed for of the hard plastic and soft upholstered combination of the hard plastic and soft upholstered surfaces. It
is the perfect radio for a top-sounding stereo system

14RADIO-FM picks up stations with weak signals! No. 5745 W buttons and front bezels. plate, push $\$ 2$ for Shpg. BUY OF A LIFETIME! No. 5745 W buttons and front bezels.

BUILD YOUR OWN STEREO RADIO KLH ${ }^{2}$ Tuner 4.95 fim fman "The Heart Of A Receiver"....We have acquired a numbe
of front end tuners....made for KLH-one of the audio giants...for use in its sophisticated receivers. These tuners contain the mechanical electronic sections. The electmixer. FM output from the tuner is 10.7 MHZ , and the
AM output is 455 KHZ . Both types operate on 12 VDC AM output is 455 KHZ . Both types operate on 12 VDC , and draw approx. 12 ma. Tuning capacitor on FM mod

PLASTIC

395
No, 60104R and making contact thru the 2 -wire cable. Has compartment

FOR SALE

HAMS, CBers, SWLs-eight character morse-Aword morse code reader; RTTY reader. Decodes signals off the air. Send for details. MICROCRAFT CORPORATION, Box 513R, Thiensville, WI 53092 1-414-241-8144.
"SECRET Registry of U.S. Government Radio Frequencies (25 to 470 MHz)." Book shows $3,800+$ frequencies: FBI, FCC, Treasury, Border, Immigration, Secret Service, Customs, NASA, military, more. $\$ 4.95$ ppd., CRB RESEARCH, Box 56-RE, Commack, NY 11725

PARTS, IC's, LED's, keyboards. Free catalog. R-E ELECTRONICS, 1919 West Belt North 107, Houston, TX 77043.
PRINTED Circuit Boards: Your artwork, quick delivery, reasonable. Quantity discounts. ATLAS CIRCUITS, Box 974, Waynesville, NC 28786 (704) 456-3739

PORTABLE video recorders, special: Magnavox \#8251; VHS; $2 / 4$ hour; tuner-timer; only $\$ 995$. AUDIO-VIDEO, 2021 E. Markland, Kokomo, IN 46901 317-459-8511 9AM-2PM
SCANNERS, Bearcat, Regency, Fanon/Courier Scanner crystals, antennas. HARVEY PARK RADIO, Box 19224, Denver, CO 80219
SURPLUS electronics. Monthly picture flyer. Low prices. U.S. only. STAR-TRONICS, Box 683, McMinnvelle, OR 97218
RAW speakers and finished systems for $\mathrm{Hi}-\mathrm{Fi}$ and Sound Reinforcement. Also cabinet plans, hardware, grille cloth, crossovers, microphones, accessories, much more. Information-packed cata$\log , \$ 1.00$. UNIVERSAL DISCOUNT SOUND, Dept. RE, 2243 Ringling Blvd, Sarasota, FL 33577
ALARM systems! Burglar, fire, car. Finest equipment! Save! Catalog, decal; 50¢, refundable! AAS, 186 H Oxmoor Road, B'ham, AL 35209
ALL T.V. Tuners repaired $\$ 11.95$. Fast service quality work. MIKE'S T.V. TUNER SERVICE, Box 187, Bean Station, TN 37708 615-581-6393

CIRCLE 53 ON FREE INFORMATION CARD

Low Cost...High Performance

DIGITAL MULTIMETER

\$99.95 WIRED

Low cost, high performance, that's the DM-700. Unlike some of the hobby grade DMMs available, the DM-700 offers professional quality performance and appearance at a hobbyist price. It features 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch high LED display, with automatic decimal placement, automatic polarity, and overrange indication. You can depend upon the DM-700, state-of-the-art components such as a precision laser trimmed resistor array, semiconductor band gap reference, and reliable LSI circuitry insure lab quality performance for years to come. Basic DC volts and ohms accuracy is 0.1%, and you can measure voltage all the way from $100 \mu \mathrm{~V}$ to 1000 volts, current from 0.1μ a to 2.0 amps and resistance from 0.1 ohms to 20 megohms. Overload protection is inherent in the design of the DM-700, 1250 volts, AC or DC on all ranges, making it virtually goof proof. Power is supplied by four 'C' size cells, making the DM-700 portable, and, as options, a nicad battery pack and AC adapter are available. The DM-700 features a handsome, jet black, rugged ABS case with convenient retractable tilt bail. All factory wired units are covered by a one year limited warranty and kits have a 90 day parts warranty.
Order a DM-700, examine it for 10 days, and if you're not satisifed in every way, return it in original form for a prompt refund.

Specifications

DC and AC volts:
DC and AC current:
Resistance:
input protection
$100 \mu \mathrm{~V}$ to 1000 Volts, 5 ranges
$0.1 \mu \mathrm{~A}$ to $2.0 \mathrm{Amps}, 5$ ranges
0.19 to 20 megohms, 6 ranges

1250 volts AC/DC all ranges fuse protected for overcurrent

Input impedance:	10 megohms, DC/AC volts
Display:	$3 /$ digits, 0.5 inch LED
Accuracy:	0.1% basic DC volts
Power:	$4^{\circ} \mathrm{C}^{\prime}$ cells, optional nicad pack, or AC adapter
Size:	$6^{\prime} \mathrm{W} \times 3^{\prime \prime} H \times 6^{\prime \prime} \mathrm{D}$
Weight:	$2^{\prime} \mathrm{lbs}$ with batteries

$\begin{array}{ll}\text { Weight: } & 6 \mathrm{lbs} \text { with batteries }\end{array}$
Prices

s00.95 WIRED

The CT-70 breaks the price barrier on lab quality frequency counters. No longer do you have to settle for a kit, half-kit or poor performance, the CT-70 is completely wired and tested, features professional quality construction and specifications, plus is covered by . one year warranty. Power for the CT-70 is provided by four 'AA' size batteries or 12 volts, AC or DC, available as options are a nicad battery pack, and AC adapter. Three selectable frequency ranges, each with its own pre-amp, enable you to make accurate measurements from less than 10 Hz to greater than 600 mHz . All switches are conveniently locater on the front panel for ease of operation, and a single input jack eliminates the need to change cables as different ranges are selected. Accurate readings are insured by the use of a large 0.4 inch seven digit LED display, a 1.0 ppm TCXO time base and a handy LED gate light indicator.

The CT-70 is the answer to all your measurement needs, in the field, in the lab, or in the ham shack. Order yours today, examine it for 10 days, if you're not completely satisfied, return the unit for a prompt and courteous refund.

Specifications

Frequency range: Sensitivity:

Stability:
Display:
Input protection:
Input impedance:
Power
Gate:
Decimal point:
Size:
Weight:

10 Hz to over 600 mHz
less than 25 mv to 150 mHz
ess than 150 mv to 600 mHz
$1.0 \mathrm{ppm}, 20-40^{\circ} \mathrm{C} ; 0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCXO crystal time base
7 digits, LED, 0.4 inch height
50 VAC to $60 \mathrm{mHz}, 10$ VAC to 600 mHz 1 megohm, 6 and 60 mHz ranges 50 ohms , 600 mHz range
4 ' AA ' cells, $12 \mathrm{~V} \mathrm{AC/DC}$
0.1 sec and 1.0 sec LED gate light

Automatic, all ranges
$5^{\prime \prime} \mathrm{W} \times 11 / 2^{\prime \prime} \mathrm{H} \times 5^{1 / 2^{\prime \prime}}$ D
1 lb with batteries

Prices

CT-70 wired + tested ... $\$ 99.95$
AC adapter
Nicad pack with AC adapter/charger .. 9.95
Telescopic whip antenna, BNC plug.. 7.95
Tilt bail assembly. 3.95

CT-70 Kit Form
75.95

100 W CLASS A POWER AMP KIT

Dynamic Bias Class " A " circuit design makes this unit unique in its class. Crystal clear, 100 watts power output will satisfy the most picky fans. A perfect combination with the TA-1020 low T.I.M. stereo pre-amp.
Specifications:

- Output power: 100 W RMS into 8 -ohm 125W RMS into 4 -ohm
- Frequency response: $10 \mathrm{~Hz}-100 \mathrm{KHz}$
- T.H.D.: less than 0.008\%
- S/N ratio: better than 80dB
- Input sensitivity: IV max.
- Power supply: $\pm 40 \mathrm{~V} @ 5 \mathrm{amp}$

PROFESSIONAL 10 OCTAVE STEREO GRAPHIC EQUALIZERI!

Graphic equalizer have been used for years in sound studios and concert arenas but were too expensive to be considered for home use. Now we offer you the facility at an affordable price. This unit can extend your control of your Hi-Fi system by minimizing the non-linearities of the combined speaker/room system. Fantastic features as foliows

- 10 double slide controls for two channels
- Cut out rumble, surface noise and hiss
- Minimizes speaker/room non-linearities
- Frequency response from 30 Hz to 16 KHz
- 10 tone controls plus defeat, monitor and tape
selector.
- Control range $\pm 12 \mathrm{~dB}$ in 10 octaves $(30 \mathrm{~Hz}, 60 \mathrm{~Hz}$, $120 \mathrm{~Hz}, 240 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}$, 16 KHz.$)$
- Operating voltage $117 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

FACTORY ASSEMBLED UNIT, NOT A KIT SPECIAL PRICE $\$ 117.00$ ea
SUB MINI SIZE FET CONDENSER MICROPHONE

Stereo level indicator kit with arc-shape display Stereo level indicator kit with arc-shape display panem. PC board with an arc-shape 4 colors LED disdesign PC board with an arc-shape 4 colors LED display (change color from red, yellow, green and the peak output indicated by rose). The power range is
very large from -30 dB to +5 dB . The Mark III invery large, from - 300 B to +5 dB . The Mark 111 indicator is applicable to 1 watt - 200 watts amplifier operating voltage is $3 \mathrm{~V}-9 \mathrm{VC}$ at max 400 MA . The circuit uses 10 LEDS per channel. It is very easy to speaker output!

MARK II SOUND

ACTIVATED SWITCH KIT

Sensitivity: $-65 \mathrm{~dB} \pm 3 \mathrm{db}$ Sensitivity: $-65 \mathrm{~dB} \pm 3 \mathrm{db}$
FEQ. Response: $50 \mathrm{~Hz} \quad 8 \mathrm{KHz}$ Output Impedance: 1 K ohm max Polar Pattern: Omni-directional Polar Pattern: Omni-directional
Power Supply: $1.5 \mathrm{~V} \quad 10 \mathrm{~V}$ D.C. Sound Pressure Level: Max. 120 dB Sound Pressure Level: Max. 120
EM4RP $\$ 2.50$ ea. or 2 for $\$ 4.50$

IN KIT FORM $\$ 18.50$

MARK IV 15 STEPS LED POWER LEVEL INDICATOR KIT

This new stereo level indicator kit consists of 364 color LED (15 per channel) to indicate the sound level output of your amplifier from $-36 \mathrm{~dB} \sim+3 \mathrm{~dB}$. Comes with a well-designed silk screen printed plas or gradual output indicating. Power supply is $6 \sim$ 12V D.C. with THG on board input sensitivity controls. This unit can work with any amplifier from 1W to 200W!
Kit includes 70 pcs. driver transistors, 38 pcs. matched 4 -color LED, all other electronic components, PC board and front panel.

MARK IV KIT $\$ 31.50$

30W + 30W STEREO

 HYBRID AMPLIFIER KIT
It works in 12V DC as well! Kit includes 1 PC SANYO

 STK-043 stereo power amp. IC LM 1458 as pre amp. all other electronic parts, PC Board, all controi pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-fi output up to 60 watts (30 watts per channel) yet gives outless than 0.1% total harmonic distortion between
$\$ 32.50$ PER KIT 100 Mz and 10 KHz

BATTERY POWERED

FLUORESCENT LANTERN

MODEL 888 R FEATURES

Circuitry: designed for operation by high efficient, high power silicon transistor which enable illumination maintain in a standard level even the battery supply drops to a certain low voltage. $9^{\prime \prime} 6 \mathrm{~W}$ cool/daylight miniature fluorescent tube.
$8 \times 1.5 \mathrm{~V}$ UM-1 (size D) dry cell battery. Easy sliding door for changing batteries. $\$ 10.50 \mathrm{EA}$ - Stainless reflector with wide angle in-

COMPLETED UNIT - NOT A KITI
OCL pre amp. \& power stereo amp. with bass, middie, treble 3 -way tone control. Fully assembled and tested, ready to work. Total harmonic distortion less than 0.5% at full power. Output maximum is 60
watts per channel at 89 . Power supply is $24-36 \mathrm{~V}$ AC or DC. Complete unit. Assembled $\$ 49.50$ ea. Power transformer
$\$ 8.50 \mathrm{ea}$.

A new designed circuit emwith a led indicator. A condensor microphone comss with the kit. the relay can handle up to 200 watts contact to allow to control most things. Just click the finger, the relay will close, the second click will release it. Sensitivity can be adSusitivity can be ad-trim-pot. Operating voltage 9V D.C. TY-18 \$8.50 PER KIT

5W AUDIO AMP KIT

 PROFESSIONAL
 PANEL METERS
 $\begin{array}{lll}\text { A. } & 0-50 \mathrm{UA} & 8.50 \\ \text { B. } \\ 0.30 \mathrm{VDC} & 8.50 \\ 8 . & \mathrm{ea} .\end{array}$
 C. $0-50 \mathrm{VDC} \quad 8.50 \mathrm{ea}$.
 $\begin{array}{ll}\text { D. } 0-3 A D C \\ \text { E. } 0-100 V D C & 9.00 \mathrm{ea} \\ 9.00 & \mathrm{ea} .\end{array}$ E. white face with ea.
 Tvise MU-52E All meters white face

 ALARM CLOCK MODULE

ASSEMBLED! NOT A KIT!

Features: • 4 digits $0.5^{\prime \prime}$ LED Displays • 12 hours real time format - 24 hours alarm audio output - 59 min . countdown timer

ONLY $\$ 7.00$ EACH
SPECIAL TRANSFORMER FOR CLOCK

DIGITAL AUTO SECURITY SYSTEM

4 DIGITS PERSONAL CODE SPECIAL \$19.95
proximity triggere
voltage triggered
mechanically triggered
This alarm protects you and itself! Entering protected area will set it off, sounding your car horn or siren you add. Any change in voltage will also rigger the alarm into action. If cables within passenger compartment are cut, the unit protects itsel by sounding the alarm. 3-WAY PROTECTION! All units factory assembled and tested - Not a kit
A NEW LED ARRAY AND DRIVER FOR LEVEL METERS
This series covers a wide range of level indication uses, output and input voltage, time related change, temperature, light measurement and sound level. The problem of uneven brilliance often encountered with LED arrangements as well as design problems caused by using several units of varying size are substantially reduced. 12 LEDs in one bar

LED ARRAY

GL-112R3 Red, Red, Red
$\$ 5.50$
GL-112N3 Green, Yellow, Red $\$ 6.50$
L-112M2 Green, Green, Red $\$ 6.50$
GL-112G3 Green, Green, Green
$\$ 6.50$

तो

LED DRIVERS

1R 2406 G is an I.C. specially designed to drive. 12 LED. The number of LED is lineally illuminated according to the control voltage input terminal Operating voltage is $9 \quad 12 \mathrm{~V}$ D.C. $\$ 5.35 \mathrm{EACH}$

PROFESSIONAL FM

WIRELESS MICROPHONE

TECT model WEM-16 is a factory assembled FM wire less microphone powered by an AA size battery. Transmits in the range of $88-108 \mathrm{MHz}$ with 3 transistor circuits and an omni-directional electric condenser. Element built-in plastic tube type case; mike is $61 / 4^{\prime \prime}$ long. With a standard FM radio, can be heard anywhere on a one-acre lot; sound quality was judged very good.
\$16.50

FLASHER LED

Unique design combines a jumbo red LED with an ic flasher chip in one package. Operates directly from $5 V-7 V ~ D C$. No dropping resistor neded. Pulse rate 3 Hz @ 5 V 20 mA .
2 for $\$ 2.20$
BIPOLAR LED RED/GREEN
2 colors in one LED, green and red, changes color when reverse voltage supply. Amazing! 2 FOR $\$ 1.60$

LCD CLOCK MODULE!

- $0.5^{\prime \prime}$ LCD 4 digits display • X'tal controlled cir cuits - D.C. powered (1.5 V battery) - 12 hr . or 24 hr . display - 24 hr . alarm set - 60 min . countdown timer - On board dual back-up lights - Dual time zone display - Stop watch function.
NIC1200 (12 hr) $\$ 24.50$ EA.
$\% 22: 45$
MINI-SIZED I.C. AM RADIO
Size smaller than a box of matches! Receives all AM stations. Batteries and ear phones included. Only $\$ 10.50$

12 DC MINI RELAY

| 6 V | SPDT | 2 AMP | 1.30 |
| :--- | :--- | :--- | :--- | :--- |
| 12 V | SPDT | 3 AMP | 1.60 |
| 12 V | DPDT | 2 AMP | 2.50 |
| 12 V | $4 P D T$ | 3 AMP | 3.50 |

LINEAR SLIDE POT

500Ω SINGLE
Metal Case $3^{\prime \prime}$ Long
2 FOR $\$ 1.20$

Buyers Worldwide Are Clamoring For Our 1 c MORE GETS U 2

```
40-TWO WATY RESISTORS, carbo-films, carbons, some 5%ers,("456)
S0-TERMINAL STRIPS, asst'd solder and screw types, 2 lugs & up, (#334)
1-WATCH GUTS, LED, who knows how good, micro-digital bonanza, (#5115)
6-25 WATT PLASTIC POWER, 2N6100 series, TO-220, 200bvcbo, 3A
4-CALCULATOR AC JACKS, }3\mathrm{ terminals, takes mini plug, (#2316)
5-PRE-FORM & WATTERS, popular values, for PC ADDI. (#2444)
40-LOW NOISE RESISTORS, 1/8 & 1/2 W, oxide & magnetic film, (#220)
40pc-SEMI-CON SURPRISE, asst. zeners, diodes, etc. untested, (#2226)
-LASCR OPTO COUPLER, type H11C3, mini dip, (*5700)
0-UPRIGHT ELECTROS, 100% asst'd values and voltages, (#5900)
2-GE 3W AUDIO AMP, type PA-263 IC chip, mono, (s1522).............
50-CAP SPECIAL, asst.values in mylar, mica, ceramic, disc, etc. (##3775)
40-FEEDTHRU CAPACITORS, used for hams, RF, UHF circuitry, "15668
2-6-CELL BATTERY HOLDER, 9V, for AA size cells, with 9V clip (# 636
4-12 VOLT LAMPS, w/leads, popular voltage, 100's of uses, (#5942).
1-12 VDC SOLENOID, similar to Guardian 16-P, w/plunger,""" stroke, (#6013)
10-AXIAL ELECTROS, assorted values and capacitance,("5901
10-POWER TAB TRANSISTORS, NPN, plastic, TO-220, (#5629)
6.PRECISION TRIM POTS, ass''d singles and multi-turns, untested, (33389)
-ASSORTED IC SOCKETS, 24, 28, & 40 pin sockets on G-10 bos,d, (=635
4-PUSHBUTTON ALARM SWITCH, 125 VAC 1A SPST, NC, (#5289)
6-CABLE & PLUG SET, 2 cond. 2.5mm mini plug w/6'polarized cable; (%5737)
10-RESISTOR NETWORKS, assorted values in dips and singles, (#5699)
50－TERMINAL STRIPS，asst＇d solder and screw types， 2 lugs \＆up，（ 833 5－ASSORTED EDGE CONNECTORS，mixed 4 \＆ 6 pin singles，
```

HY－GAIN ONE ARM BANDIT MIKES
Only
$\$ 14.99$
2 FOR $\$ 15$
Take one hand command of your mobile or bave rig
WOLUME，SQUELCH，CHANNNEL SELECTOR
SPEAKER，And DIGITLL DISPAY SEA Siently located where your fingera are all conve the talking
Comes with 6 ft ．multiconductor ，olor coded coile
 .29100 for 1 $\begin{array}{r}100 \text { for } 1.30 \\ 2 \text { for } 1.30 \\ \hline\end{array}$ 20 for 1.30

12 for 1.30 | 12 for 1.30 |
| :---: |
| 8 for 1.30 | T30 for 1.30 80 for 1.30 80 for 1.30

80
for 1.30
40 9 40 for 1.30 20 for 1.30 20 for 1.30
4 for 1.30
2 for 1.30 2 for 1.30 100 for 1.30
80 for 1.30 80 for 1.30
80 for 1.30 80 for 1.30
4 for 1.30 4 for 1.30
8 for 1.30
2 for 1.30 2 for 1.30
20 for 1,30 20 for 1.30
20 for 1.30 12 for 1.30
40 for 1.30 20 for 1.30
12 ie rig
OFF
TOR
onve
onve
ling
coiled
ypeo
ssac

2－DOUBLE－SIDED PC BOARDS， $3^{" 1} \times 12^{\prime \prime}$ high quality G－10 glass，（＂15694） 60－TUBULAR CAPACITORS，asst＇d 100 mmf to 1 mf to 600 WVDC，（ $\# 35 A 219$ ） 6－MICRO MINI REED SWITCHES， 1 ＂long，for alarms，relays，etc．，（\＃1258）
10－TANTALUM ELECTROS，asst＇d mini，axial，hermetically sealed，（\＃5848） S0－DISC TYPE CAPS，incl；NPO，hi－Q mylar，ceramics，asst＇d values，（\＃4 60－COILS \＆CHOKES，asst＇d RF，OSC，IF，parasitic types，（\＃ 35 A297） 6－SWITCHCRAFT PHONO JACKS，hi－Q，chasis mount，teflon base，（＂5119） 30－SUBMINI IF TRANSFORMERS，asst．slug tuned，shielded，（\＃35A9） 0 －ADJUSTABLE FERRITE CORES，center cut for hex adiust，（\＃5701） 10－PC TRIMPOTS，screwdriver adjust，assorted values，
25－4＂CABLE TIES，plastic，like Ty－wrap style，（ $=5217$ ）
5－CRYSTALS，may include；CB，ham various shapes and 3－MICRO SWITCHES，SPST，NO contacts，plunger style，sold， 65－MOLEX SOCKETS，＂on－a－strip＂，for 8－40 pin IC\＆（\＃1609） －PAIRS 9V BATTERY CLIPS，w／red \＆black color－coded leads，（\＃2852） 6－LM340T VOLTAGE REGULATORS， 5 to 24 volts，TO－220，（＂5897）
40－POLYBTYRENE CAPACITORS，asst＇d values and voltages，（＊1052） 15－THERMISTORS，resistors that change with the temperature，（ $=2048$ ） 65－1／4 WATT RESISTORS，asst＇d values，metal film，marked，（ís797） 10－MODULAR SWITCHES，Centralab＂push－on＂type，up to 4PDT，（＂3150） 50 －MOIORS MOTORS＂，small，high speed，asst＇d sizes，${ }^{3-6 \mathrm{VDC}}$ ，（\＃2551 50－MICAS asst．sizes－n－shapes，incl．＂silvers＂too！（ $(\mathbf{3 7 3 7}$ ）．．
10－TRANSISTOR SOCKETS，for 10－TRANSISTOR SOCKETS，for npn and pnp types，（＂3845）
4－HOBBY VOLTAGE REGULATORS，UM－309，320，340＇s，TO 12－PANEL SWITCHES，assorted slides，rotaries，modulars，etc．（i3330A 60－RESISTOR SPECIAL，$/ 4$ to 1 watt，carbons，carbo－films，etc．（ $\# 35 \mathrm{~B} 96$ ）
65 －HALF WATT RESISTORS， 65－HALF WATT RESISTORS，assid．carbons，carbo－films，various values，（＊＊454 －HUMBUCKER CONTRQIS，assorted values，manufacturers dump，（w3807

＇FLIP－OVER＇

 DIGITAL CLOCK－Built－In Alarm Function With 24 Hour Dial Indicator
－ $3 / 4^{\prime \prime}$ High White Numerals
\＄699 CK

nob whe Numerals oxcoos

S0－PRECISION RESISTORS， $1 / 2,1, \& 2$ watts． 1% ，assorted types，（（＂363）

60－CERAMIC CAPS，asss＇d val．\＆styles，incl；tubulars，NPO s，etc．，＂： 590 ）
30 MOLEX CONNECTORS，nylon，asst＇d styles，colors，\＆$\#$ of cond．＇（\＃ 5835 ） 4－ROCKER SWITCHES，DPDT，solder eyelet terminals，（\＃3302）
1－RELAY，BABCOCK 6VDC，SPST，plastic case（ $\ddagger 5807$ ）
 30pc．－HEAT SHRINK，Thermo－fit，
10－SLIDE SWITCHES，SPST，SPDT，etc．all shapes and shrizes，（a5927） $25-$ DTL＇s， 100% prime，asst＇d flip flops，etc．，marked，（\＃3709）．
10－MAN－3＇s， 7 segment，w／bubble magnifier， 100% material，（\＃3842）
1－LITE SENSITIVE UNIIUNCTION TRANSISTOR，programmable，（ïS719） 100－PRE－FORMED \％／WATTERS，popular values，some 5 \＆ 10 \％ers，（\＃1060） 4－PHOTO ELECTRIC DARLINGTON TRANSISTORS，（\＃3276）
40－POWER RESISTORS，assorted types，includes 2 to 10 watters，（\＃228） 40－POWER RESISTORS，assorted types，includes 2 to 10 watters，（ ${ }^{(1228}$ ） 30．＂CRIMP－ON＂TERMINALS，rings and spades，for \＃\＃12－20 S0－＂CRIMP－ON＂TERMINALS，rings and spades，for＂ $12-20$ wire，（ia3955）． 30－FT．WIRE－WRAP WIRE， 30 ga ge，insulated，continuous length，（ $\mathbf{1 3 8 0 3 \text { ）．}}$ 6－SPDT MICRC SLIDE SWITCH，only $3 / 7^{\prime \prime}$ cube，for PC mount，（\＃3429） 10－PR．－RCAPLUGS \＆IACKS，for audio，speakers，etc．，（m402）
5－2N3055 HOBBY TRANSISTORS， 5－2N3055 HOBBY TRANSISTORS
6－SINGLE PIN MICRO GREEN LEDS，3V， 10 mils，＂pin heads＂＇，100\％，（u6126） 6．）UMBO RED LEDS， $1.5-3 \mathrm{~V}$ Q 10 mA ． 100% material， 100 ＇s of uses，（＂）
6－MAGNETIC DISCS，shatter－resistant Plastalloy， $13 / 16^{\prime \prime}$ dia．（＂16099） 5 －PHOTO CELSS，Vactec 900 ，disc type， $\mathrm{R}: 2 \mathrm{~K}$ ohm（dark）w／leads，（if $1-12 \mathrm{VDC}$ SPDT RELAY， 180 ohm coil， $25 \mathrm{~mA}, 1 \times 1 \times 1 / \mathrm{m}^{\prime \prime}$ sealed（ $(\mathbf{5} 5937$ ） 10．VOLUME CONTROIS，asst．values，audio，and switch too！（＂592）$\ldots \ldots . .$.
60－PREFORMED DISC CAPS，handy assortment of values，marked，（（\＃1181）

We honor MASTERCW TO ORDT
（2SX Oown）．Ordor by phone or Moll，Minimum and COD，
 $\$ 10$（Us funde）．Excese will be returned．TERMS：add
PO．O．BOX $942 \cdot \mathrm{R4}$ 0
） 30 12 for 1.30
80 for 1.30 80 for 1.30
30 for 1.30 30 for 1.30
30 for 1.30
20 for 1.30 for 1.30 20 for 1.30
8 for 1.30
24 8 for 1.30
24 for 1.30 24 for 1.30 for 1.30
for 1.30 $\square-2=$

MOTION DETECTOR
Completely assembled on circuit board with capacitors
Specs and application notes included－4．95
CRYSTALS－ $3.579545 \mathrm{MHz} \mathrm{99C}$ 6.0 MHz 2.95 JUMBO LED＇s
Green，7／1．00－Yellow，7／1．00－Red，10／1．00 $\begin{array}{ll}13.00 & 100 / 13.00 \quad 100 / 9.00 \\ \text { MOUNTING CLIPS－} 12 / 1.00\end{array}$ 7 SEG Displays（comp．grade
$3^{\prime \prime} / 954-6^{\prime \prime} / 1.45$（specify ann．or cath．）
AM／FM RADIO CHIP－（\＃4408） 2.00 or $3 / 5.00$
Complete AM／FM IC－external IF required DIPPED TANTALUMS $47 \mu \mathrm{f} 35 \mathrm{~V}$（ $1^{\prime \prime}$ leads）10／1．00 SUPER SUB MINI LYTICS
$1000 \mu \mathrm{f} 50 \mathrm{~V}\left(1^{1 / 1 \mathrm{~m}^{\prime \prime} L X} \mathrm{~L} / \mathrm{h}^{\prime} \mathrm{W}\right) 75 \$$ or $10 / 6.00$
$47 \mu \mathrm{~V} 25 \mathrm{~V}\left(1 / 6^{\prime \prime} \mathrm{LX} 1 / \mathrm{m}^{\prime \prime} \mathrm{W}\right), 10 / \$ 1.00$
$400 \mu \mathrm{f} 330 \mathrm{~V}$（photo flash or laser circuits）－2／1．00
COMPUTER GRADE TWIST LOCKS
$3200 \mu f 50 \mathrm{~V}$（ideal for power supplies） 1.00
$1000 \mu \mathrm{f} 50 \mathrm{~V}-1.001000 \mu \mathrm{f}$ 185V－2．00
DISCS－ $.0011 \mathrm{KV} 25 / 1.00, .150 \mathrm{~V} 15 / 1.00$
HEAT SENSITIVE SWITCH－ $4 / 1.00$
self contained unit opens at 150 C
9 DIGIT FLUORESCENT DISPLAY by NEC
EXTRA LOUD 9V BUZZER－3／2．00
WALL PLUG ADAPTER－5VDC © 160ma－1．50
6．3V 1．2 Amp Transformer－1．75
MINI AUDIO TRANSFORMERS $-3 / 1.00$
DIGITAL MOTION／UNIT COUNTER MODULE
（Fairchild）with large 4 digit display \＆specs－7．00
8035 Microprocessor， 17.00 INTERFACE CHIP－D8243 16 line I／O extender for all single chip μ Ps 5.75

BRAND NEW ITEM
FREQUENCY COUNTER CHIP ICM 7225 IPL
（ 40 pin），with on board dividers． decoders／drivers．18．95－specs included A／D CONVERTER by Datel ADC－MC8BC－8 bit analog to digital converter， high speed－ 18.00 D／A CONVERTER－DAC－08BC－ 8 bit－ 12.00 на 741 OP AMPS（mini－dip）4／1．00䒑a 741 OP AMPS（mini－dip） $4 / 1.00$
ZENER DIODES－20V $1 \mathrm{amp} 10 / 1.00$ BRIDGES $11 / 2 \mathrm{amp} / .50 .6 \mathrm{amp} / 2.00,25 \mathrm{amp} / 1.00$
 FREQUENCY COUNTER CHIP
ICM 7225 IPL

Terms MICRO－MART accepts Visa，MC，and telephone COD＇S．Foreign orders $\$ 50.00$ minimum plus shipping－US funds only．Orders under $\$ 10.00$ include $\$ 2.00$ for shipping／handling．All components gua anteed or money refunded．Immediate shipping．N．J．residents add 5% sales tax． MICRO－MART－ 552 SUMMIT AVE．，WESTFIELD，N．J． 07090 •（201）654－6008

CIRCLE 56 ON FREE INFORMATION CARD

Electricity from the sun．
5 Volt panel $1 / 4$ amp $\$ 502.5$ Volt panel $1 / 2 \mathrm{amp} \$ 40$ GIANT $31 / 2$ inch cell，delivers $1 \mathrm{amp} \$ 8.50$
Above cell with special motor \＆prop，runs in sun $\$ 10.25$
$\begin{array}{lr}\text { Computer video monitor chassis } 9 \text { inch，} 12 \text { volt used } & \$ 50 \\ \text { Computer video monitor chassis } 12 \text { inch，new } & \$ 60 \\ \text { Hy Gain CB chassis，trunk mount } & \$ 9.00\end{array}$

LOW-COST ADD-ON DISK

* Card
* Power Supply
face Cable
* CP/M Disk O
* CP/M Disk Operatin
* Box of 10 Diskettes

IMSSTATIC RAM BOARDS
 \star Recomion
Reconded by Alohamicrossystems

	250 ns .	450 ns .
8 SK Static 16 K Static	$\begin{aligned} & \mathbf{s 2 4 9 . 0 0} \\ & 5449.00 \\ & \hline 799900 \end{aligned}$	$\begin{gathered} 5189.00 \\ \substack{389090 \\ \hline} \end{gathered}$

ANADEX PRINTER

FLOPPY DISKETTES
\star

Soltsector, Miniskettes 10 Sector, 1 \$4.25 Each, $10 / 399.95$
$\star \quad 8^{\prime \prime}$ Standard Floppy Soft Sector, Hard Sector
\$4.50 Each. 1041.95 -Add 4,95 for 10 Pack in Deluxe Disk Holder

NEW CENTRONICS 730 PRINTER

$\underset{\star}{\text { 2-800/2-80A/8080 CPU BOARD }}$ \star On board $2708 \star 2708$ included (450ns.)
\star Power on jump \star completely socketed
\& Z-80 Assembled and Tested $\$ 185.00$: Z-80 Kit........................ S 129.95
Z Z-80 Bare Pord.......... 34.95 \& For 4 MHz Speed Add $\$ 15.00$
8080A Kit .. 99.95
8080A Assembled...........

Answer, Originate $\$ 189.00$
ACOUSTIC COUPLER SPECIAL ANMODEL A3O
SPECIAL PURCHASE
OF SURPLUS UNITS
OF SURPLUS UNITS
AVAILABILITY LIMITED

1980 CATALOG AVAILABLE SOON.

PadioElectronios

 is available in MICROFORMfrom UNIVERSITY MICROFILMS

300 N. Zeeb Road
Ann Arbor, Michigan 48106
and in

MICROFICHE

from

MICROCARD EDITIONS

A Division of Information Handling Services
P.O. Box 1154

Englewood, Colorado 80110
BELL \& HOWELL CO.
Micro Photo Division
Old Mansfield Road
Wooster, Ohio 44691
Attn.: Mr. Splers
Please write for complete Information

CIRCLE 49 ON FREE INFORMATION CARD

BULLET ELECTPONICS

NPN HIGH VOLTAGE
 2.00

$V C E O=450$ VDC $\quad I C=3 A(5 A$ Peak $)$ FOR TV HORIZONTAL SECTIONS; HIGH VOLTAGE REGULATORS REPLACES: 2N5076, 2N5077, 2N5838, 2N5665, BDY94, BU126, 2SC2121, 2N5840, 2SC1046,
2N5466. TIP556 AND MANY OTHERS.

LM3046	(CA3046) Transistor Array 75
RCA 40430	400V 6A TRIAC TO-66 75
CA3086	RCA Transistor Array 80
MC1438R	Power Op Amp/Driver 50
1N4148	Prime, Full Lead 100/2.50
LM3302	Quad Comparator 89
2 SC 1849	High Freq NPN TO-92 6/1.00
MPS A20	NPN GEN PUR 8 8/1.00

SE OI Sound Effects Kia 17.50

The SE-01 is a complete kit that
contains all the parts to build a programmable sound effects generator Designed around
the new Texas Instruments
sN7 the new Texas Instruments
sN7647 Sound Chip, The
board provides banks of MiNI board provides banks of MINI
DIP switches and pots to
program the various comprogram the various comDinations otthe SLF Oscillator,
VCO. Noise. One Shot and
Envelope Contris Envelope Controls. A Quad Op
Amp IC is used to implement Amp ic is used to implement
an Adjustable Puiso Generaan Adjustable Pulse Genera-
tor, Level Comparator and
Muitiplex Oncill Multipleex Oscillator tor aven more versathity The $31 . \times 5^{\prime}$
PC Board features a prototype PC Board teatures a prototype
area to allow for uber added area to allow for user adoed
circuity Easily programmed
to duplicate Explosions circuity Easily programmed
to duplicate Explosions,
Phasor Guns, Slosm Tralns, Phasor Cuuss, Steas Tralins, or
aimost an infinite number of almost an infinite number of
other sounds. The unit has a
multiple of aplicss ais part multipounds. The unit has a a
low price incluctios all The assembly manual, provramming charts, and detailed 76477 chip specifications it runs on a 9 V battery (not included) On board 100MW amp
will drive a amall speaker directly, or the unit can be connected to your stereo with incredible results' (Speaker not included)
76477 CHIP IS INCLUDED. EXTRA CHIPS $\$ 2.95 \mathrm{EACH}$ - $\$ 17.50$ LESS SPEAKER \& BATTERY

AY3-8910 PROGRAMMABLE SOUND GENERATOR
The AY3-8910 is a 40 pin LSI chip with three oscillators, three amplitude controls, programmable noise generator, three mixers, an envelope generator, and three D/A converters that are controlled by 8 BIT WORDS. No external pots or caps, required. This chip hooked to an 8 bit microprocessor chip or Buss (8080, Z80,6800 etc.) can be software controlled to produce almost any sound. It will play three note chords, make bangs, whistles, sirens, gunshots, explosions, bleets, whines, or grunts. In addition, it has provisions to control its own memory chips with two IO ports. The chip requires +5 V @ 75 ma chips with two 10 ports. The chip requires $+5 \mathrm{~V} @ 75 \mathrm{ma}$
and a standard TTL clock oscillator. A truly incredible and a st
\$14.95 W/Basic Spec Sheet (4 pages)
60 page manual with S-100 interface instructions and several programming examples, $\$ 3.00$ extra.
1/2W RESISTOR ASSORTMENT
A good mix of 5\%
now, first quality
lead devices: All
now, first quality
Asst) 200 pieces 2.00
POTENTIOMETER ASSORTMENT
A mix of new, panel mount $3 / 8^{\prime \prime}$ bushing pots in various values. Some dual. some with switches

10/2.00
SLIDE SWITCH ASSORTMENT
An outstanding bargain Includes miniature and standard sizes and muitiposition units. All new first quality, name brand switches Try one pack and
you'll reond you'll reorder more SPECIAL - 12 for $\$ 1.20$ (Assortment

XAN SUPER DIGITS

 $6^{\prime \prime}$ JUMBO LED 7 SEGMENT
RED

996

6920 COMMON CATHODE
6640 COMMON ANODE
NOW A SUPER READOUT AT A SUPER BUYI These are factory fresh prime LED readouts, not seconds or rejects as sold by others. Compare ou SPECIFY: COMMON ANODE OR COMMON CATHODE

PO Box $40: 1244 / 2$

Garllond $\pi \times 75040$

The AY3-1350 is a MOS microcomputer synthesizer of pre-programmed tunes fo-
applications in toys, music boxes, and door chimes. The standarr device has
set of 25 different popular and classical sunes In addition ponere are 3 chime
ture making a total of 25 tunes. FEATURES

- Minimal external components
* Automatic switch-off signal at end of tune for power saving

Sequential tune mode organ or piano quality

* 4 door capability when used as door chim

Operation with tunes in external PROM if required
(2708)

- Single sum
- Tunges include: STAR WARS, BEETHOVEN's 9 th \& 5th, JINGLE BELLS, YANKEE DOODLE, STAR SPANGLED BANNEA, CLEMENTINE, GOD SAVE THE QUEEN, O SOLE MIO, WEST MINISTER AND DESCENDING OCTAVE CHIME PLUS MAN MORE

$\$ 14.50$

WITH DETAILED SPECS
AND INSTRUCTIONS

7 WATT AUDIO AMP KIT
BOARD (INCLUDED) RUNS ON 12 VDCC GREAT FOR ANY PROJECT THAT NEEOS AN INEXPENSIVE AMP LESS THAN 3% THO 5 WATTS
COMPATIRLEWITH SE-O1 SOUND KIT SSMS

ULTRASONIC RELAY KIT
NVISIBLE BEAM WORKS LIKE A PHOTO ELECTRIC EYE USE UP TO 25 FT. APART, COMPLETEKIT. ALL PARTS a PC BOARDS. $\quad \$ 21.50$
From T.I.: TL490 BAR/DOT DRIVER IC. Drives 10 LED's with adjustable analog steps. Units are cascadable up to 10 (100 steps). Drives LED's directly Great for voltage, current, or audio displays. Similar features to LM3914 with specs and circuit notes.

* NO C.O.D.s
* PHONE ORDERS ACCEPTED ON VISA AND MASTERCHARGE ONLY
(214) 278-3553

- ADD 5\% FOR SHIPPING

TX. RES. ADD 5\% STATE SALES TAX
OREIGN ORDERS ADD 10\% (EXCEPT
catalag free an request

TEST EOUPMENT, TOOLS, TEEPPIONE DEILCESS nuto Streio prodicts
FREE 8 pc . Tool Set (value $\$ 14.95$) with $\$ 200.00$ purchase of merchandise from this ad

Logic Probe

Function Generator	Model 2001
Reg Sis	
155	$\quad \$ 15795$ Reg S185.95

- Sine- square-

100 MHz 8-Digit Counter - 20 Hz to 100 MHz range $=$ LED display H4 2380 CD

Preassembled Proto Proto Board with

Preassembled Proto Proto Boar	
	Supplies
Fully assembed breadoard	- Repulated
contians four 0 Or-59S sockets	
5 -way binding posts	
31/2-Digit 0.1\% Digit	
Capacitance Meter	
- 9 anges from 1999 pF to $199.9 \mu \mathrm{~F}$ = 0.1% of reading accuracy $=$ Auto	

Portable Digital BUK PRECISION Capacitance Meter . Measures capacitance from
0.1 pF to 1 Frad \approx Resolves to 0.1 pFF : 10 ranges for
accuracy and resolution digit easy-to-read LED display
 . 0.5% accuracy

3½-Digit DMM with LCD Readout $=0.1 \%$ DC accuracy = 0 readability $=100 \mu \mathrm{~A}$ current range e $100 \mu \mathrm{~V}, 100 \cap \mathrm{~A} .0 .01$ a resolution = Battery life of aver 100 hours a Shielded 10
stay accurate in RF fields stay accurate in RF fieids = Low battery warning
Dual Trace $5^{\prime \prime} 30 \mathrm{MHz}$
Triggered Scope - Rise time 117 SS delay line $=$ Flat response with smooth rolloff past 30 MHz =
$5 \mathrm{mV} / \mathrm{cm}$ vertical sensitivity $5 \mathrm{mV} / \mathrm{cm}$ vertical
Probes included Call for Discount Prices

DIGITAL MULTIMETERS

LEADER

RF Wide Band Signal Generator Model LSG-16
 MHz on harmonics

Transistorized

Model LCR-7
a Highly accurate 3 digit readout a Operates on one 9 V battery or with
adapter $=$ Measures inductance. capacitance. resistance and loss

with Calibrated
Variable Delay
Model LBO-515A with probes

- $1 \mu \mathrm{sec}$ to 5 sec built-in delay

20

MHz Dual
Trace Oscilloscope Model LBO-508A with probes
Call for Discount Prices

TECHNICIAN AIDS

Weller: Xcelite' Attache Style Model Tcioost
 Service Master model 99 -SM ${ }_{\text {Reg }}$ Reg s ${ }^{\text {s }} 47^{50}$

EDSYN SOLDAPULLT ${ }^{*}$ Desoldering Tool ${ }^{\text {s }} 15^{95}$

CAR STEREO PRODUCTS

In-Dash Car Stereos
8-Track Tape Player with
 AMFMMMPX Radio $\$ 52^{50}$ Auto Reverse Cassette Tape Player with AMFM/MPX Radio Model CAS-999
${ }^{5} 7995$ Cassette Tape Player with AMFMMPX Radio $\$ 5750$

Stereo Power Booster
Model Pow-40

- 40W stero
: Bass percosannel $\$ 24^{95} \square \mathrm{C}=\mathrm{C}$
 Model $\$ 1495$ Bp2000.697R 14 ea

Miniature High Fidelity 3-Way Stereo Speakers MINXI speakers , sound Model
HF-9 $\$ 6950 \quad$ Rr_ Reg. $\$ 149.95$ - Die Cast Aluminum = Long Throw Wooter = Soft Dome Tweeter = $80-20,000 \mathrm{~Hz}=50 \mathrm{~W}, 8$ ohms

56 Portable VOM

SPECIALS

RCA-VIZ Super Chro-Bar | Model WR-538A |
| :---: |
| Reo |
| $\$ 12295$ | \$8995 BC Circuit Box

Portable Oscilloscopes NLS 15 MHz Dual Trace Triggered 0 禺
 ${ }^{5} 369^{95}{ }_{\text {si3s }}$ Reo Model Ms-215
15 MHz Triggered Miniscope Model Ms-15 Res 531900 s 269^{95}
30 MHz Dual Trace
Triggered Miniscope
mocel Ms-230 Re9 s59 00 ${ }^{5} 479^{95}$

TELEPHONE
 DEVICES

MURAPHONE
Cordless
Telephone

Consle : Tho (2) Laing Modutes : One (1) Appiance $\$ 79^{50}$

tamp Wodules $\$ 14.50$ Stanared Commund Consoit $\$ 36.00$

FORD HAM 855 Conklin St. Farmingdale, N.Y. 11735 - Master Charge a BankAmer Order

- COD = Check a Nond insurance extra

CODs, shipping and insurance exira sales tax

DIGI-KEY TOU 1-800-346-5144\% Quality Electronic Components

DON'T FORCET OUR

STEREO GRAPHIC EQUALIZER \& PREAMP Octave-Band 50 hz to 12,80018 CTS Slide controls

Assembled \& tested $\$ 109.15$
No additional components necessary - American made

- Glass epoxy Double sided p.t.h. circuit board - ALLEN BRADLEY Type M conductive plastic volume control
- Adjustable input sensitivity: .3V to 3V RMS Bourns MFT Dual trimmer)
- BIFET II Op amps: low noise, 13V/uS (TL074)
- Bourns 2\% Resistor networks
- 1% Metal film resistors

Instrument-type min. toggle switch
on-off-22 db mute)
-2 aocurate clipping lights: one on preamp stage one on EQ stage

- All 3 LED's are Hi-brightness types
(8mcd at 20 mA DIFFUSED)
- Wiring \& mtg. info included

80 WATT STEREO POWER AMPLIFIER
Assembled \& tested circuit board.
American made $\$ 67.89$ (Class'B $\$ 61.90$)
Ready to mount to heat sinks. Requires 27 V
split supply, 125 W.
full power (2% Class AB

- Slew Rate 33V/uS, low TIM

Slew Rate 33V/US, Iow TIM • VI limiting
POWER SUPPLY KIT FOR ABOVE
Includes $125 \mathrm{~W} \times \mathrm{fmr}$, filter caps,
rect, schemo \$33.00
Transformer only $\$ 27.00$ Schemo $\$ 1.00$
NE541 80V Audio Power Driver $\$ 3.80$

TIP 31A npn, TIP 32A pnp 60V compl. drivers $\$.51$	TIP 35A npn 25A 60V output
TIP 36 A pnp compl to above	
$\$ 1.65$	
1.73	

VARO $331 X 100 \mathrm{~V}$ 3A FAST RECOVERY rect $\$.53$ MR 7516 A 50 V rect $\$.83$
$4700 \mathrm{uF} / 35 \mathrm{~V}$ filter $\$ 1.50$
The brightest LEDI Stanle
The brightest LED! Stanley SBR 5531
8mcd 20 mA diff $\$.55$
ALLEN BRADLEY type M cond. plastic dual Aud. taper 100K, 1 cm cube
$3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$ shaft w/mtg. hdw $\$ 3.75$
ALL PARTS PRIME NO SURPLUS
MANY OTHER PARTS AVAILABLE. SEND $\$ 1.00$ FOR FLYER (WE INCL. WITH ORDER)
\$10.00 MIN. ORDER
ONE DAY SHPMT 24 HOURORDER
LINE (209) 577-4256 VISA/M.C. QB ELECTRONICS 2131 STONE MODESTO, CA 95351

CIRCLE 45 ON FREE INFORMATION CARD

NESDA

Provides Members
Low Bank Card Rate
On Mastercharge and VISA/Bank Americard

From a high of only

1.67\% to as low as
1.10\%

ARE YOU INTERESTED/

NESDA Members:
Write for more information to:
NESDA BankCard Plan
2708 W. Berry, Fort Worth, Tx 76109
NOT A MEMBER?

WHY NOT?

Contact your NESDA-Affiliated
State Association or write NESDA
2708 W. Berry, Fort Worth, Tx 76109
CIRCLE 16 ON FREE INFORMATION CARD

RAMSEY ELECTRONIC'S PARTS WAREHOUSE

MINI KITS - YOU HAVE SEEN THESE BEFORE NOW HERE ARE OLD FAVORITE AND NEW ONES TOO. GREAT FOR THAT AFTERNOON HOBBY.

FM
 MINI
 MIKE

A super high performance FM wire less mike kit! Transmits a stable signal up to 300 yards with exceptional audio quality by means of its built in electret mike. Kit includes case, mike, on-off switch, antenna. battery and super instructions. This is the finest unit available

FM-3 Kit
$\begin{array}{lr} & \$ 14.95 \\ & 19.95\end{array}$

Wireless Mike. Kit

Transmits up to 300 ' to ny FM broadcast ra dio. uses any type o has added sensitive mike FM-2 stage.
FM-1 kit $\$ 3.95 \quad$ FM -2 kit $\$ 4.95$

Universal Timer Kit
Provides the basic parts and PC board required to provide a source of precision timing and pulse generation. Uses 555 timer IC and includes a range of parts for most timing needs

PARTS PARADE

IC SPECIALS

	Sockets
READOUTS	8 Pin 10/\$2.00
FND 359 4 ${ }^{\circ} \mathrm{COC} \quad \$ 1.00$	$14 \mathrm{Pin} \quad 10 / 52.00$
FNO S07/510 5ca ${ }^{\text {cher }}$	16 Pin 10/\$2.00
NNO S07/510 SCA	$24 \mathrm{Pin} \quad 4 / \$ 2.00$
	$28 \mathrm{Pin} \quad 4 / \mathbf{5 2 . 0 0}$
	in $3 / \mathbf{\$ 2 . 0 0}$
TRANSISTORS	Diodes
	5.1 V Zener $20 / 51.00$
2 N3904 NPN C.F $15 / 51.00$	1N914 Type 50/\$1.00
${ }^{2} \mathbf{2 N 3 0 0 6 ~ P N P P C . F ~} \quad 15 / 81.00$	$1 \mathrm{KV} 2 \mathrm{Amp} \quad 8 / \$ 1.00$
	100V 1Amp 15/\$1.00
$\begin{array}{ll}\text { 2N4410 NPN C.F } & 15 / 51.00 \\ \text { 2NA916 FET C+F } & 4 / 51.00\end{array}$	
	25 AMP
2N3771 NPN silicon 51.50	
2N5179 UHF NPN $\quad 3 / 52.00$	100 V Bridge
	\$1.50 each
Power Trob PNP 40W 3/.00	
MPF $102 / 2$ N54 4	
${ }_{\text {2NSOSS }}{ }^{\text {PNP }}$	4 for $\$ 1.00$
2Nzets UTT 1/8200	for \$1.00

CLOCK KITS

Your old favorites are here again. Over $\mathbf{7 , 0 0 0}$ Sold to Date
Be one of the gang and order yours today!
Try your hand at building the finest looking clock on the market. Its satin finish anodized aluminum case looks great anywhere, while six . $4^{\prime \prime}$ LED digits provide a highly readable display. This is a complete kit, no extras needed, and it only takes 1-2 hours to assemble. Your choice of case colors: silver, gold, black (specify).
Clock kit, $12 / 24$ hour, DC-5
\$24.95
\$29.95 Alarm clock, 12 hour only, DC-8 $\$ 29.95$ 12V DC car clock, DC-7
$\$ 29.95$
For wired and tested clocks add $\$ 10.00$ to kit price.

Car Clock

The UN-KIT, only 5 solder connections
302
Here's a super looking, rugged and accurate auto clock. which is a snap to build and
install Clock movement is instail Clock movement is completely assembled - you only solder 3 wires and 2
switches. takes about 15 minutes! Display is bright green with automatic brightness switches. takes about satin finish anodized aluminum case which can be attached 5 different ways using 2 sided tape Choice of silver black or gold case (specify)
DC-3 kit. 12 hour forma

The clock that's got it all: 6-. $5^{\prime \prime}$ LEDs, 12/24 hour, snooze, 24 hour alarm, 4 year calendar, battery backup, and lots more. The super 7001 chip is used. Size: $5 \times 4 \times 2$ inches. Complete kit. less case (not available) DC-9 $\$ 34.95$	Under Dash Car Clock 12/24 hour clock in a beautiful plastic case features. 6 jumbo RED LEDS, high accuracy (001) , easy 3 wire hookup, display blanks with ignition. and super instructions Optional dimmer atuomatically adjusts display to ambient light level DC-11 clock with mtg bracket DM-1 dimmer adapter
	nc and baud and display 6 lines with board Kits $\$ 169.95$ 513.95 517.95 $\$ 13.95$ $\$ 14.95$ $\$ 14.95$

Audio

Prescaler
Make high resolution audio measurments, great for musica instrument tuning, PL tones, etc Multiplies audio UP in frequency, selectable $\times 10$ or $\times 100$, gives . 01 time! High sensitivity sec. gate meg input z and built-in filtering meg input z and built-in filtering gives great performance. Runs
on 9 V battery, all CMOS. PS-2 kit $\quad \$ 29.95$ PS-2 wire
$\$ 29.95$
$\$ 39.95$

600 MHz
 PRESCALER

Extend the range of your counter to 600 MHz . Works with all counters. Less than 150 mv sensitivity. specify 10 or -100
Wired, tested, PS-1B \$59.95 Kit. PS-1B
$\$ 44.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp features 8 times power gain. 1 W in for 8 out, 2 W in for 15 out, 4 W in for 30 out. Max output of 35 W , incredible value, complete with all parts, less case and T-R relay.
PA-1, 30 W pwr amp kit
\$22.95
TR-1, RF sensed T-R relay kit
6.95

$\begin{array}{l}\text { MRF-238 transistor as used in PA-1 } \\ 8-10 d \mathrm{~d} \\ \text { gain } 150 \mathrm{mhz} \\ \$ 11.95\end{array}$

RF actuated relay senses RF
Power Supply Kit
Complete triple regulated power supply provides variable 6 to 18 volts at
(1W) and closes DPDT relay
For RF sensed T-R relay
TR-1 Kit \$6.95 regulation, good filtering and small egulation, good fitering and sma size. Less transformers, requires 6.3 V Complete kit,
OP-AMP Special
$\$ 6.95$
BI-FET LF 13741 - Direct pin for pin 741 compatible, but 500,000 MEG
input z, super low 50 pa input current, low power drain

RADIO-ELECTRONICS

 		 \qquad 	8808828882888282888828 	

INTERNATIONAL ELECTRONICS UNLIMITED

CIRCLE 27 ON FREE INFORMATION CARD

CIRCLE 18 ON FREE INFORMATION CARD

ALARM CLOCK KITS:

4 Digit .5"

Here it is! The first of several quality kits we have been asked for: Here is what you get - unbelievable as it may sound

1 National-5375AA Clock Chip
1 Bowmar Clock Stick Readout (L.E.D.) 4 digit - 1/2" 13 Transitors
2 Push Buttons for time set
2 Toggle Switches for alarm
1 Filter cap
4 1N4000 series diodes
1 1N4148 ORDER
$\$ 9.99$
2 Disc caps ${ }_{c K-100 A C}^{K K T}$
P.C. Board \$2.25

29 Resistors
1 Transducer (Speaker) for Alarm
Plug in
1 LED Lamp for alarm indicator Transformer \$1.50
Case - $\$ 3.50$

D.C. MODEL

Same as above except it includes 60 Hz timebase. This Kit Includes:
1 National 5375AA Clock Chip
1 Bowmar Clock Stick Readout - (L.E.D.) 4 digit - 1/2"
12 Transistors
2 Push Buttons for time set
2 Disc caps
27 Resistors
1 MOV
160 Hz time base
ORDER
CK-100DC
P.C. Board \$2.25
+1) 25
Case - $\$ 3.50$
$\star \star \star \star \star \star \star \star \star \star \star$ CABLE TIES $\star \star \star$
MAKE YOUR PROJECTS "NEAT \& TIDY". 4" CABLE TIES AT A FANTASTIC PRICE. GET THIS BARGAIN AND "TIE" IT DOWN. $\mathbf{\$ 2 . 0 0}$ for 100 or better yet $\$ 15.00$ for 1000

FACTORY PRIME

 BI - Polar LED 596 ea. or 10 for $\$ 5$
LAB-BENCH VARIABLE POWER SUPPLY KIT

5 to 20 VDC at 1 AMP. Short circuit protected by current limit. Uses IC regulator and 10 AMP Power Darlington. Very good regulation and low ripple. Kit includes PC Board, all parts, large heatsink and shielded transformer. 50 MV. TYP Regulation. \$15.99 KIT

5-14 v.D.C. BETTER BEEPER

Two audio oscillators - a low frequency pulse oscillator either or both audio frequencies can be shifted (warbled) or pulsed on and off. Constant tone capability. Any combination of pulses and warbles or tones. $17 / 8$ "D $\times 13 / 4$ "ALARMSTOYS - TESTING - ETC. Complete kit... $\$ 3.55$ or 3 for $\$ 9$

MICRO MINI TOGGLE SWITCHES

6 for \$5 with hardware.

16K DYNAMIC RAM CHIP
 WORKS IN TRS-80 OR APPLE I VERY LIMITED STOCK! "MAGAZINE SPECIAL" - $\mathbf{8} / \mathbf{\$ 7 9 . 5 0}$

 Digital Research: Parts

 Digital Research: Parts

 (OF TEXAS)

 (OF TEXAS)}

P.O. BOX 401247B GARLAND, TEXAS 75040•(214) 271-2461

TERMS: Add $50 e$ postage, we pay balance. Orders under $\$ 15$ add 756 handling No C.O.D. We accept Visa, MasterCharge and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20\% P\&H. 90 Day Money Back Guarantee on all items. Write for our free catalog full of many useful bargains.

PARTS PROCUREMENT PROBLEMS

FUJI-SVEA Has the Largest Inventory of Original Japanese Parts Anywhere

Seeking Original Japanese Replacement Parts for CB, TV and Stereo Repair Use?

Minimum order $\$ 500$ Ohio renidents add 4t meles Jex Add $\$ 100$ poztage and handiling

Nationwide 800 543 -1607
Ohio 800-582-1630
LOCAL 513/874-0220
874-0223

IMMEDIATE DELIVERY WITHIN 48 HOURS ON ALL TRANSISTORS IN STOCK
FUJI-SVEA ENTERPRISE
P.O. Box 40325 Cincinnati. Ohio 45240

Tolex 21-4732

PHONE RECORDING ADAPTER

vOX VOICE ACTIVATED CONTROL SWITCH

Solid state．Self contained．Excellent
adjustable sensitivity．Voices or other adjustable sensitivity．Voices or other
sounds activate recorder．Uses re－ sounds activate recorder．Uses
corder mike or remote mike． $21 / 4 \times 17 / 4$ corder mike or
$\times 1 / 4^{\prime \prime} \$ 24.95^{*}$

－condensor mic cat．Mo． 1086 Built－in FET Circuit
\＄ 2.95
－HICAD PACK Cat Ma． 1547
－lambod dual voltage regulated power supply cal．Ma． 1636
LXD－3－152 Input 115
Output $\pm 12 \mathrm{~V}$ e 0.4 Amps
－S－12 volt water pump cat mo． 1661
All Plastic Construction
$\$ 3.69$
－guad jorstick Cat．Me． 1440
$\$ 4.49$
4－100 K Pots
2 for \＄ 1.15
－al－polar leos cat．Mo． 1531
\＄ 2.29
－Leo assontuent cat．Mi． 1501
25 Prime Assorted，All Styles．
－ 12 VOLT I AMP POWER SUPPLY Cat．He． 1682
－COMPUTER GRADES CAPACITORS，FACTORY FRESH CLL Ho． 1525 330,000 ut
150,000 bit
SVDC

7,000 uf a 6VDC
$\$ 14.88$

－battery chargers	ALL 110 VAC $50 / 60 \mathrm{~Hz}$		
voltage	AMPEMSE	cat．мо．	PaICE
2.9 VDC	125 mA	1181	\＄ 1.35
3.0 VDC	800 mA	1639	\＄ 1.49
4.5 VDC	150 mA	1180	\＄ 1.95
6.0 VDC	30 mA	1574	\＄ 1.29
6.5 VDC	20 mA	1610	\＄ 1.09
7.8 VDC	30 mA	1527	\＄ 1.79
9.0 VDC	（regulated） 100 mA	1450	\＄ 3.49
18.0 VAC	85 mA	1633	\＄ 2.09

Please use Cat．No．\＆Voltage when ordering．
$\$ 1750$ TELEPHOME ARSWERME COMTROLLER

Another TEK－EL Exclusive，comes this uni－
que $6 \times 3^{\prime \prime}$ board，jam－packed with all the que 6×3 board，jam－packed with all the telephone answering machinel The unit
features；On－board voltage regulation，Play and record electronics for tape and control signals．（Record and Playback），all the switching circuitry for automatic answer，and
a completely integrated circuit amplifier． a completely integrated circuit amplifier－
Some of the obvious uses would be，Remote control device，Auto－answer for Acoustic Modems，Intercom，and even an application as diverse as a Vocal Doorbell．All units are
brand new and guaranteed．Complete with 2 for $\$ \mathbf{3} \mathbf{O}^{00} \left\lvert\, \begin{aligned} & \text { brand new and guaranteed．Complete with } \\ & \text { schematic and specs．} \\ & \text { Cat．} 1 \mathrm{lo} .1657\end{aligned}\right.$

STOAE \＆WIAEKOUSE OPE MOMDAY－FAIDAY 95 ，SATUREAY 91 TEIEPHONE（517）935 7328
CIRCLE 6 ON FREE INFORMATION CARD

1．EMM 4200A， 4 K Static RAMs，Ceramic A local memory boards manufacturer closed．We bought the new memory boards and took these 4200A static RAMs out．They are tested and 90 －day guaran－ teed 100% good．
Prime tested 4200A 4K RAMs $\$ 5.50$ ea．
$32 / \$ 160.00,300$ pieces or more $\$ 4.50$ ea．
2．Motorola Triacs， 500 volt＠ 15 amp
MAC 20－7
10 for $\$ 20.00$
3．Power SCR＇s（GEC50A） 100 volts＠ 110

amps

4．Squirrel Cage Fans（Howard）．．$\$ 7.00$ ea
5．Power Diode 1N1202A， 200 volt＠ 12 amp．
6．LM 3235 Volt 3 amps ，voltage regulator
4.95 each or $10 / 45.00$ ．

7．Super Saver．Micro PD411，Ceramic $4 \mathrm{~K} \times$
1 dynamic RAMs．
8 for $\$ 10.00$ ．

CIRCLE 71 ON FREE INFORMATION CARD

$\begin{array}{lc} \begin{array}{ll} \text { function } & \text { XR-2206KB } \\ \text { Generator } \end{array} \\ \text { KIT } & \$ 1095 \end{array}$			KX－33B Micro Computer Easy－to－use 4－bit microcomputer intended to teach basic concepts of computer technology．Op－ orates on $110 \mathrm{VAC}, 60 \mathrm{~Hz}$ ． $\mathbf{2 2 9} 00$			
		$\underset{\substack{\text { Compact } \\ \text { Accurate } \\ \text { Dependable }}}{\text { Con }}$				
		NLSNON－LINEAR SYSTEMSPortableMini－ScopesMs－15．．．．．．．．．．．．．$\$ 349$Ms－215 ．．．．．．．．．．．$\$ 465$Ms－230 ．．．．．．．．．．$\$ 598$	析			
			＊ 15%			
Prof						
－16K Bytes－Large Keyboard						
－						
－EPRON		Light Emitting Diode ED95 ${ }^{\text {Rat．Orange }}$ and Green	Bring this COUPON into one of our stores or mail to our Mail Order address shown below and			
5 Volt						
			receive a $\mathbf{1 5 \%}$ DISCOINT on purchases from this Ad of $\$ 100.00$ or more．			
		Color mixing and Green ONLY	Offer EXPIRES on April 30． 1980			
－S JUST	38006 3800	to separate an－ ode terminals． ${ }^{5} \boldsymbol{1}^{60}$				
Whe whap hat tool		FlasherLED				
	边38013	$\begin{aligned} & \text { Red LED and } \text { ONLY } \\ & \text { FlasherICChip } \\ & \text { in One Package } \\ & 924 \end{aligned}$	．．．．．．．．．．．．．．．．sta			
	${ }_{38}^{38}$		Coupons accepted only with full name and address filled in．			
－		LED Array	） 1.			
M		Excellent for use in level indi－ cation circuits． GL－112R3 All Red GL－112M2 Green／Red $厶_{\text {ea }}^{80}$ GL－112M2 Green／Red ca	 Phase incluge vour charge card dumber．PHONE ORDERS：（213） $641-4064$			
\bullet						
		LED Driver				$\begin{aligned} & \text { CULVER CITY } \\ & \text { 11000 Jeflerson Biva, } \\ & \text { Culver Ciy, CA } 00230 \\ & \text { (213) } 380-2505 \end{aligned}$
		Designed to illuminate 12 seg－ ment LED Arrays according to an input con－ trol voltage． IR－2406 4^{80}				
in						

NEW PRODUCTS

Super Color S-100 Video Kit \$99.95 Elf II Adapter Kit \$24.50

Expandable to 256×192 high resolution color graphics. 6847 with all display modes computer
controlled. Memory mapped 1 K RAM expandable to 6 K . S-100 bus $1802,8080,8085$, Z80 etc. Gremlin Color Video Kit $\$ 59.95$
32×16 alpha/numerics and graphics: up to 8 colors with 6847 chip; 1 K RAM at EOOO. Plugs into Super EHI 44 pin bus. Not expandable to high resolution Graphics.

Quest Super Basic

Quest, the leader in inexpensive 1802 systems announces another first. Quest is the first company worldwide to ship a full size Basic for 1802 systems. A complete function Super Basic by Ron Cenker including floating point capability with scientific notation (number range $\pm .17 E^{\text {Po }}$), arrays: String manipulation; Cassette $/ \mathbf{I}$. Save and load, Basic, Data and machine language programs, and over 75 Statements. Functions and Operators.
Easily adaptable on most 1802 systems. Requires 12 K RAM minimum for Basic and user

Plugs into Elf 11 providing Super Elf 44 and 50 pin bus plus S-100 bus expansion (With Super Expansion). High and low address dis
1802 16K Dynamic RAM Kit $\$ 149.00$ 1802/S-100 expandable to 32K. Hidden refresh w/clocks up to 4 MHz w/no wait states Addi. 16 K
RAM $\$ 79.00$ RAM $\$ 79.00$.
programs. Cassette version in stock now. ROM versions coming soon with exchange privilege allowing some credit for cassette version

Super Basic on Cassette

 $\$ 40.00$Tom Pittman's 1802 Tiny Basic Source listing now available. Find out how Tom Pittman wrote Tiny Basic and how to get the most out of it. Never offered before.
S-100 4-Slot Expansion
Super Monitor VIII Source Listing
$\$ 9.95$
ting $\$ 15.00$ Coming Soon: Assembler, Editor, Disassembler, DA/AD, Super Sound/Music, EPRO
programmer, Stringy Floppy Disc System.

RCA Cosmac Super Elf Computer \$106.95

Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Full Basic, ASCII Keyboards, video character generation, etc.
Before you buy another small computer, see if it includes the following features: ROM monitor, State and Mode displays; Single step; Optional address displays; Power Supply; Audio Amplifier and Speaker; Fully socketed for all IC's; Real cost of in warranty repairs; Full documentation.
The Super EIf includes a ROM monitor for program loading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unique Quest address and data bus displays before, during and after executing instructions. Also, CPU mode and instruction cycle are decoded and displayed on 8 LED indicators. An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own written. The speaker amplifier may also be used to drive relays for control purposes

Super Expansion Board

This is truly an astounding value! This board has been designed to allow you to decide how you comes with 4 K of low power RAM fully addressable anywhere in 64 K with built-in memory protect and a cassette interface. Provisions have been made for all other options on the same board and it fits neatly into the hardwood cabinet board and it thts neatly into the hardwood cabinet
alongside the Super Ell. The board includes slots alongside the Super EII. The board includes slots
for up to 6 K of EPROM $(2708,2758,2716$ or TI for up to $6 K$ of EPROM (2708, 2758, 2716 or TI
2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor $\$ 19.95$ is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader/ editor and error checking multi file cassette read/write software, (relocatible cassette file) another exclusive from Quest. It includes register save and readout, block move capability and video graphics driver with blinking cursor. Break points can be used with the register save feature to isolate program bugs quickly, then follow with

A 24 key HEX keyboard includes 16 HEX keys plus load, reset, run, wait, input, memory protect, monitor select and single step. Large, on board displays provide output and optional high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connector slot for the Quest Super Expansion Board. Power supply and sockets for all IC's are included in the price plus a detailed 127 pg . instruction manual which now includes over 40 pgs. of software info. including a series of lessons to help get you started and a music program and graphics target game. Many schools and universities are using the Super Elf as a course of study. OEM s use it for training and R\&D. Remember, other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Elf Kit \$106.95, High address option $\$ 8.95$, Low address option $\$ 9.95$. Custom Cabinet with drilled and labelled plexiglass front panel $\$ 24.95$. Expansion Cabinet with room for $4 \mathrm{~S}-100$ boards $\$ 41.00$. NiCad
Battery Memory Saver Kit $\$ 6.95$. All kits and options also completely assembled and tested. Questdata, a 12 page monthly software publication for 1802 computer users is available by subscription for $\$ 12.00$ per year. Issues 1-12 bound $\$ 16.50$.
Tiny Basic Cassette $\$ 10.00$, on ROM $\$ 38.00$, original Elf kit board $\$ 14.95$. 1802 software; Moews Video Graphics $\$ 3.50$. Games and Music $\$ 3.00$, Chip 8 Interpreter $\$ 5.50$.

assette Interface $\$ 89.95$

subroutines allowing users to take advantage of monitor functions simply by calling them up. improvements and revisions are easily done with the monitor. If you have the Super Expansion Board and Super Monitor the monitor is up and running at the push of a button.
Other on board options include Parallel Input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. RS 232 and 20 ma Current Loop for teletype or other device are on board and if you need more memory there are two S-100 slots for static RAM or video boards. Also a 1 K Super Monitor version 2 with video driver for full capability display with Tiny Basic and a video interface board. Parallel I/O Ports $\$ 9.85$, RS $232 \$ 4.50$ TTY 20 ma I/F $\$ 1.95, \mathrm{~S}-100 \$ 4.50$. A 50 pin connector set with ribbon cable is available at \$15.25 for easy connection between the Super Elf and the Super Expansion Board.
Power Supply Kit for the complete system (see Multi-volt Power Supply below)

Same day shipment. First line parts only Factory tested. Guaranteed money back
Quality IC's and other components at fac Quality IC's a
tory prices.
INTEGRATED CIRCUITS

ROCKWELL AIM 65 Computer 6502 based single board with full ASCII keyboard and 20 column thermal printer. 20 char alphanumeric display, ROM monitor. fully expandable. $\$ 375.00$. 4 K version $\$ 450,00,4 \mathrm{~K}$
$\$ 85.00$, 8 K Basic Interpreter $\$ 100.00$. Special small power supply for AIM65 assem. in trame $\$ 49.00$. Complete AlM65 in thin briefcase with power supply $\$ 485.00$. Molded plastic enclosure to fit AIM65 plus power supply $\$ 47.50$. Special Package Price: 4K AIM, 8K Basic, power supply, cabinet $\$ 599.00$
AIM65/KIMVIMMSuper Elf 44 pin expansion board, 3 female and 1 male bus. Board plus 3 connectors $\$ 22.95$.
AIM65/KIMVIM I/O Expansion Kit 4 parallel and 2 serial ports plus 2 internal timers $\$ 39.00$. PROM programmer for $2716 \$ 150.00$.
Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp} .=18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp} .-5 \mathrm{v}$ 5 amp . $12 \mathrm{v} .5 \mathrm{amp},-12$ option $\pm 5 \mathrm{v}, \pm 12 \mathrm{v}$ $\$ 37.45, \$ 4.00$ shipping. Kit of hardware $\$ 14.00$ Woodgrain case $\$ 10.00$, $\$ 1.50$ shipping.

PROM Eraser Will erase 25 PRoMs in 15 minutes. Ultraviolet, assembled $\$ 37.50$

60 Hz Crystal Time Base Kit $\$ 4.40$
Converts digital clocks from AC line frequenc
NiCad Battery Fixer/Charger Kit
Opens shorted cells that won t hold a charge
and then charges them up. all in one kit wfull
and then charges them up. all in one kit wffull
parts and instructions.
$\$ 7.25$

LRC $7000+$ Printer $\$ 389.00$
40/64 column dot matrix impact. std, paper Televideo Terminal $\$ 845.00$ 102 key, upper, lowercase, 10 Baud rates 24×80 char. microprocessor cont. edit. cap. Intertube II Terminal \$874.00 Super Brain
Floppy Disk Terminal $\$ 2895.00$
79IC Update Master Manual \$29.95 Complete IC data selector, 2500 pg . master reference guide. Over 50,000 cross reterences Free update service through 1979. Domestic postage S3 50 . No foreign orders
S-100 Computer Boards
8 K Static RAM Kit

8 K Static RAM Kit 16 K Static RAM Kit 24 K Static RAM Kit 32 K Static RAM Kit 16K Dynamic RAM KIt 32K Dynamic RAM Kit 64K Dynamic RAM Kit Video Interface Kit	$\begin{array}{r} \$ 135.00 \\ 265.00 \\ 423.00 \\ 475.00 \\ 199.00 \\ 310.00 \\ 470.00 \\ \$ 129.00 \end{array}$
Video Modulator Kit Conven TV set into a high qualit affecting usage. Comp. kit wful	$\$ 8.95$ itor w/o
Digital Temp. Meter Kit Indoor and outdoor. Switches back Beautiful. 50° LED readouts. No available. Needs no additional pa plete, full operation. Will measu $+200^{\circ} F$, tenths of a degree, a Beautiful woodgrain case wibeze	$\$ 34.00$ and forth. s for com100° to or liquid $\$ 11.75$

Model 178. A nofrills $4^{1 / 2}$-digit three-function DMM for production use. High accuracy and all the capability
\$235

Model 179. Has

all the features offered by the 178 plus TRMS AC, AC and DC current, $10 \mu \mathrm{~V}$ sensitivity, and
\$319

Model 179-20A

Has all the features of the Model 179 but also includes an additional 20A range, tor aplicitions \$359

Model 177. This
five-function, $4^{1 / 2} 2$-digit DMM has $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$ sensitivity, TRMS AC 0.03% basic ac
$\$ 429$
Model 191. our top-oft-the line, $51 /$-digit DMM. Microprocessor control provides 0.007% basic DC accuracy.

Model 169 Our "macho 31/2-digit bench D with 0.25% basic range and function annunciators on the display and 1-year battery life.

Model 130. Our rugged, handfunctions, 0.5% basic DC accuracy, easy-to-use rotary switches, impact-resistant case, light (only 10 oz .) weight and a 10A current range.

GET IT AJU! $\begin{aligned} & \text { Subscribe today, a } \\ & \text { miss a single issue. }\end{aligned}$

When you subscribe to the best electronics magazine of all-Radio-Electronics-you're making sure that you'll get all the news of electronics you want, every month from now on. Issue after issue, you'll get equipment news, test reports, projects to build, computer technology, servicing tips and more, including regular columns on computers, solid state, hi-fi, hobbies and servicing. And every one is written by the experts, the outstanding authorities in the most exciting, fastestgrowing field in the world todayelectronics.

And...you save money, too, as much as $\$ 5$. off the newsstand price of Radio-Electronics when you select one of the subscription offers listed on the handy coupon. More important-you'll be assured of having your copy reserved, even if it runs out on the newsstands. You save money and time. Make sure you get all the excitement in every issue of Radio-Electronics, every month, by filling in and mailing the coupon, today.

GET THE BEST!-Radio-Electronics

4000
Name
\qquad
$\square 2$ Years-24 issues ONLY \$25.00
(Save More! $\$ 5.00$ off newsstand price.)
\square Payment enclosed
\square Bill me
Extra Shipping: Canada $\$ 3.00$ per year. all other countries $\$ 5.00$ per year. State_ Zip Code_
Mail to: Radio Electronics SUBSCRIPTION DEPT. P.O. BOX 2520, BOULDER, COLO. 80322

Make The Shack ${ }^{\text {® }}$ Your Parts Place! Low Prices and New ltems Every Day

Type	Cat. No.	ONLY
7400	$276-1801$.49
7402	$276-1811$.49
7404	$276-1802$.49
7441	$276-1804$.99
7447	$276-1805$.99
7448	$276-1816$.99
7473	$276-1803$.49
7475	$276-1806$.89
7476	$276-1813$.59
7490	$276-1808$.89
7492	$276-1819$.89
74154	$276-1834$	1.39
74192	$276-1831$	1.19
74193	$276-1820$	1.19

Top Octave Synthesizer IC
 99

$\$ 50240$. Ideal for electronic keyboard instruments! Generates 13 equally timbred notes. $\mathrm{C}_{8} 10 \mathrm{C}_{8}$. 11 to 16 VCOmp , single squaply, wave 16 -pin outp with data 276 -1780

Rhythm Pattern
 5^{99} Generator IC

MM5871. Build your own rhythm box or drum synthesizer! 6 patterns can be used alone or in any combination. Trigger outputs for wood block, brushes, bongo, snare and bass 16-pin DIP. 276-1785 5.99

SALE! Resistor Packs
 Less than 2 c each/ Precision-made resistors
popular values: 10Ω to 10 megs. Stock up! popular values: 10Ω to 10 megs. Stock up! $1 / 2$-Watt. 10% tol. 47 or more popular values. 271-601 Pkg. of 350(Reg 9.95) Sale 6.95 $1 / 4$-Watt. 5% tol. 56 or more popular values
$271-602 . \quad$ Pkg. of 350 (Reg. 9.95) Sale 6.95

> 3½-Digit LCD Readout Multitester 79^{95}

20 Ranges
10 Megohm Input Big 0.4" Display

Liquid crystal display is easy to read, even in sunlight Automatic polarity and zero adjust. Over-range and low battery indicators. Voltage: 500 V max. AC, 1000 V max. DC. AC DC Current: 2-20-200 mA. Resistance: $200-2 k-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M}-20 \mathrm{M} \Omega$. With test leads, instruction manual. $13 / 4 \times 33 / 4 \times 63 / 4$." Requires 9 V battery or adapter. 22-198
AC Adapter for above. 273-1431

Multipurpose, Digital and Op-Amp Edge-Card PC Boards

Save

 20\%Top qualityl Low loss epoxy giass constucton
All are $41 / 2 \times 4$: with $1 / 16^{\circ}$ grid and dual
22 -contact edge 1368 holes
Multipurpose. 276-155
2-Voltage (Digital), 276-156
3-Voltage (Op-Amp). 276-157
2. Sale 3.99

276-1550

Miniature Hobby Motors
99

Pkg. of 2

Ideal for model cars, boats and more! These PM-type motors operate with $11 / 2$ to 8 VDC and deliver up to 10.000 RPM at no load. Motor: $11 / 27^{7 / 8}$. Shaft $5_{601}^{1 / 4}$ Long leads for easy hookup. Be creative at a sensible ow pricel 273-206

2 for 996
SALE! Clock Cases \& Bezel

Save ${ }^{\text {® }}$

Built-In
Long Life Bulb
One red, one green. Complements any project where high visibility is needed. Simple one-piece construction with snap-in mounting fits $1 / 2 "^{\prime \prime}$ diameter hole. $4^{\prime \prime}$ wire
leads $272-332$

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

Power Supplies

12 volts @ 13 amps

 SURPLUS UNITS IN LIKE NEW CONDITION INPUT: 115 vac 43.63 hz OUTPUT: 12 vdc 0.13 amps REGULATION: $0.1 \%+5 \mathrm{mV}$ NL-FL, $\pm 0.1 \% \pm 5 \mathrm{mV}$ for 10% Input changoRIPPLE: 2mV
RIPPLE: 2mV RMS max., 20 mV
P.P max P.P max.

STABILTYY: Typically 10 mV for

- REMOTE SENSING, PEMOTE REMOTE SENSING, REMOTE VOLTAGE ADJUSTMENT OVERLOAD PROTECTION and OVERVOLTAGE PROTECTION ALSO AVAILABLEIN 5 VDC © 25 AMPS $\$ 79.00$ per unit

10 MEG POTS - Standard \% Watt Size -为" Long Shaft V" ${ }^{\prime \prime}$ Dia. 25 For $\$ 5.004$ For $\$ 1.00$	$22 / 44$ EDGEBOARD CONNECTOR TIN SOLDERTAIL. $156^{\prime \prime} \mathrm{x}$. $200^{\prime \prime}$ \qquad LARGE QUANTITIES AVAILABLE $\$ 1.35$ each 10 for $\$ 12.50$
	C.H D.P.D.T. PRINTED CIRCUIT MINITOGGLE $\$ 1.50$ esch 10 for $\$ 12.50$ $5 \mathrm{amps}-9125 \mathrm{vac}$ -on-on
REED RELAYS 9.15 VOLT D.C. LATCH NORMALLY OPENED CONTACTS: 1 amp max. switch -2 amp max. carry BODY SIZE: approx. 1 inch long $/ 4$ inch high S.P.S.T. 1500 ohm coil	POTTER BRUMFIELD 4 PDT RELAYS - 14 pln atyle - 24 volt d.e. or - 120 voli a.c. coll $\$ 1.25$ esch specily cail vUANge LARGE QUANTITIES AVAILABLE
	LINEAR SLIDE POTS - apprex. 13 inch long - $13 / 8$ inch slide - 10X or 20 K 50 oach SPEGIFY VALUE

all electronics corp.
905 S. Vermont Ave, SEND FOR OUR FREE CATALOG Los Angeles, CA 90006 (213) 380-8000

Store \& Warohouse Hours
MAM. $-5 M \mathrm{FM}$
Mondey thru Friday
s startay
$10 \mathrm{AM}-3 \mathrm{PM}$

CIRCLE 8 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
28 AMC Sales ... 116
46 AP Products, Inc.................................... 34
31 Aaron-Gavin Instruments 73
9 Active Electronics................................... 99

- Advance Electronics 16,78-79,110

60 Advanced Computer Products 105
8 All Electronics 120
69 Amelect, Inc... 76
13 American AntennaCov. 4
57 Ampower.. 118
Ancrona ... 116
B \& K Precision Dynascan Corp. 85
Karel Barta.. 96
Bishop Graphics, Inc. 80
Bullet Electronics 106
CFR Associates 108
Chaney Electronics 100
CIE-Cleveland Institute of Electronics
18-21
Command Productions 96
Concord-Computer Components 110
Continental SpecialtiesCov. 2
The Cooper Group-Electronics Div. 17
Dage Scientific...................................... 120
Delta Electronics 100
Deltroniks .. 116
Diamondback Electronics...................... 106
Digi-Key ... 109
Digital Research Corporation 114
EICO.. 7
Electronic Supermarket........................ 114
Electronics \& Control Engineers' Book Club-McGraw Hill Book Div.......28-31 Enterprise Development Corp..
.81
Fluke.. 7
Fordham Radio Supply.......................... 107
Formula International 102-103
2 Fuji-Svea... 115
61 Godbout Electronics 108
Grantham College of Engineering 81
Guardian Electronics 13
Heath .. 15,33
Hickok Electrical Instruments................ 91
Hitachi-Denshi 95
Information Unlimited............................ 98
International Electronics Unlimited...... 114
JS \& A
Jameco Electronics......................... 112-113
14 Jan Crystal ... 120
Kester Solder .. 32
Keithley Instruments22-23
Lakeside Industries................................. 98
3,43 Leader.. 25
20 MCM Audio ... 97
2 MTI-Mobile Training Institute 80
67,76 McKay Dymek 84,90
37 Meshna .. 104
56 Micro Mart .. 104

- National Radio Institute (NRI)-Div. of

McGraw Hill...................................8-11
National Technical Schools................86-89
16 Nesda .. 110
42 Netronics .. 36
21,22,54 O.K. Machine \& Tool................... 26-27,38

15 onComputing (BYTE) 75
OptoelectronicsCov. 3
PAIA.. 80
PTS Electronics 73
Pac-Com.. 73
Panavise... 32
Poly Paks ... 104
QB Electronics 110
Quest... 117
R \& R Instrumentation.......................... 35
RCA ... 94
Radio Shack ... 119
Ramsey Electronics 101,111
Rye Industries.................................... 94,95
Sabtronics ..2,4
Sheldahl ... 37
Solid State Sales.................................. 108
Spacecoast Research 98
Technical Electronics Corp.................. 116
Texas Tuner Service............................... 84
Tri-Star Corp. 108
Trionyx .. 83
USI Corp. .. 96
Vector .. 92
VIZ Mfg. Co. ... 93
Wersi Electronics 37
Weston Instruments................................ 35

FREE KIT Catalog AUTORANGE DIGITAL CAP-METER contain Phone 415-447-3433 EXPERIWrite or Phone for FREE CATALOG. MENTER'S Average 1 minute Saturday call is 21ξ. EQUIP
 DAGE SCIENTIFIC INSTRUMENTS

name (please print)

address		
city	state	zip code

Mall to: Radio-Electronics
SUBSCRIPTION DEPT.,'P.O. BOX 2520 , BOULDER, COLO. 80322

When quality counts

Do not be fooled by the low prices, these brand new lab quality frequency counters have important advantages over instruments costing much more. The models 7010 and 8010 are not old counters repackaged but 100% new designs using the latest LSI state-of-the-art circuitry. With only 4 IC's, our new 7010 offers a host of features including 10 Hz to 600 MHz operation, 9 digit display, 3 gate times and more. This outperforms units using 10-15 IC's at several times the size and power consumption. The older designs using many more parts increase the possiblity of failure and complexity of troubleshooting. Look closely at our impressive specifications and note you can buy these lab quality counters for similar or less money than hobby quality units with TV xtal time bases and plastic cases!

Both the new 7010 and 8010 have new amplifier circuits with amazingly flat frequency response and improved dynamic range. Sensitivity is excellent and charted below for all frequencies covered by the instruments.

Both counters use a modern, no warm up, 10 MHz TCXO [temperature compensated xtal oscillator] time base with external clock capability - no economical 3. 579545 MHz TV xtal.

MODEL 8010
1 GHz
CIRCLE 41 ON FREE INFORMATION CARD
Quality metal cases with machine screws and heavy guage black anodized aluminum provide RF shielding, light weight and are rugged and attractive - not economical plastic.

For improved resolution there are 3 gate times on the 7010 and 8 gate times on the 8010 with rapid display update. For example, the 10 second gate time on either model will update the continuous display every 10.2 seconds. Some competitive counters offering a 10 second gate time may require 20 seconds between display updates.

The 7010 and 8010 carry a 100% parts and labor guarantee for a full year. No "limited" guarantee here! Fast service when you need it too, 90% of all serviced instruments are on the way back to the user within two business days.

We have earned a reputation for state-of-the-art designs, quality products, fast service and honest advertising. All of our products are manufactured and shipped from our modern 13,000 square foot facility in Ft. Lauderdale, Florida.

When quality counts...count on Optoelectronics.

MODEL $7010 \quad 600 \mathrm{MHz}$

- display hold function - 9 RED LED DIGITS $4^{\prime \prime}$ HIGH
-. 1 Hz RESOLUTION O 1 MEGOHM \& 50 OHM INPUTS
.1 Hz RESOLUTION
0.1 PPM 10 MHz TCXO TIME BASE STATE-OF-THE-ART LSI DESIGNS
- COMPREHENSIVE USER MANUAL PROVIDED - COMPACT SIZES-7010- 1-1/4" Hx4-1/4"W×5-1/4"D 8010: $3^{\prime \prime} \mathrm{H} \times 7-1 / 2^{\prime \prime}$ W×6-1/2"D

MODEL	PRICE	RANGE 10 Hz to	$\begin{aligned} & \text { LED } \\ & \text { DIGITS } \end{aligned}$	SENSITIVITY50 OHM INPUT $25-250 \mathrm{MHz} \mid$ $250-450 \mathrm{MHz}$ $250 \mathrm{MHz}-1 \mathrm{GHz}$			$\begin{gathered} \mathrm{HI}-\mathrm{Z} \text { INPUT } \\ 10 \mathrm{~Hz}-60 \mathrm{MHz} \end{gathered}$	GATE TIMES	12 MHz	RESOLU 60 MHz	ION MAX FREQ.	$\begin{aligned} & \text { TCXO TIM } \\ & 20^{\circ}-40^{\circ} \mathrm{C} \end{aligned}$	E BASE FREO.	$\begin{aligned} & \text { EXT } \\ & \text { CLOCK } \\ & \text { INPUT } \end{aligned}$	$\begin{aligned} & \text { NI-CAD } \\ & \text { BATI } \\ & \text { PACK } \end{aligned}$
$\begin{array}{r} 7010 \\ \times 7010.1 \end{array}$	$\begin{array}{r} 145.00 \\ 225.00 \end{array}$	600 MHz	8	$5 \cdot 20 \mathrm{mV}$	$10-30 \mathrm{mV}$	$\begin{aligned} & 20-40 \mathrm{mV} \\ & \text { to } 600 \mathrm{MHz} \end{aligned}$	$1-10 \mathrm{mV}$	[3] , 1, 1,10 SEC	.1Hz	1 Hz	$\begin{gathered} 10 \mathrm{~Hz} \\ 600 \mathrm{MHz} \end{gathered}$	1 PPM 0.1 PPM	10 MHz	YES OPTION S25	$\begin{array}{\|c\|} \hline \text { YES } \\ \text { OPTION } \\ \text { S15. } \end{array}$
$\begin{array}{r} 8010 \\ -8010.1 \\ \hline \end{array}$	$\begin{array}{r} 325.00 \\ 405.00 \end{array}$	1 GHz	9	$1-10 \mathrm{mV}$	5-20 mV	10.25 mV	1.10 mV	[8].01-20 SEC	. 1 Hz	1 Hz	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 1 \mathrm{GHz} \end{aligned}$	1 PPM 0.1 PPM	10 MHz	$\begin{aligned} & \text { YES } \\ & \text { STD } \end{aligned}$	YES OPTION $\$ 39$.

MODEL 7010
$\begin{array}{ll} \\ & 7010 \\ 600 \mathrm{MHz} \text { Counter - } 1 \text { PPM TCXO } \quad \$ 145.00\end{array}$ 7010.1600 MHz Counter - 0.1 PPM TCXO $\$ 225.00$

OPTIONS

N-N.-Cad-701 Ni-Cad Battery Pack \& charging circuitry
Installs inside unit
EEC-70 Ex
$x \longrightarrow$
ORDER FACTORY DIRECT • CALL TOLL FREE

MODEL 8010
\#8010 1 GHz Counter - 1 PPM TCXO $\$ 325.00$
\#8010.1 1 GHz Counter - 0.1 PPM TCXO $\$ 405.00$ \#8010.1-13 1.3 GHz Counter - 0.1 PPM TCXO \$495.00
OPTIONS
\#Ni-Cad-801 Ni-Cad Battery Pack \&
charging circuitry
Installs inside unit
\$ 39.00
\#CC-80 Carry Case, Padded Black Vinyl S 9.95

ACCESSORIES

\#TA-100 Telescope Ant with
Telescope Ant with
Right Angle BNC
S 9.95
\#P-100 Probe, 50 ohm, $1 \times \quad \$ 13.95$
\#P-101 Probe, Lo-Pass,
\#P-101 Probe, Lo-Pas
\#P-102 Probe, Hi-Z,
\$16.95 master charge
General Purpose \$16.95
SELECTED PRICE INCREASES
EFFECTIVE APRIL 1, 1980
PLEASE CONSULT FACTORY

In one year our $/ 40$ antenna has become the largest selling CB antenna in the world!

1. It's the most expensive...

And when you pay more, you expect more!

MORE PERFORMANCE

The K40 is guaranteed to transmit further or receive clearer than any antenna it replaces. We know it will. We've tested it with 771 CB'ers just like you for one year

MORE FLEXIBILITY:

You can fit your K40 to any mounting surface. It will fit any vehicle you'll ever own! That includes choppers, dune buggies, gutters, mirror mounts, luggageracks, trunks, hatchbacks, through roofs, semis, pick ups and RV's.

MORE QUALITY:

It's not imported. It's not made in Taiwan, Korea or Japan. It's American made in an American town. It's made with better materials tha cost more and by professional people we pay more. And we designed it right here in the U.S.A.
*Including option al mounts at extra cost

...This Antenna

 is So DYNAMITE you receive a
2. It's made better....

3. It's proven best!
 ...Here's what the leading CB publications said.

CB TIMES: ". . . it's not often that a product bursts onto the mar

 ket scene, dominates and improves CB'ing for everyone. American Antenna and the K40 are doing it-repeated tests showed the K40 could out-perform the major competitive brands."RADIO-ELECTRONICS: "The results of our tests showed that, in three different positions of the monitoring receiver, the model K40 equaled or out-performed the competitive antenna. Apparently, American Antenna's advertising is not merely Madison Avenue showmanship.
PERSONAL COMMUNICATIONS:
an impressive 95% of the trials, the K40 out-performed the existing mobile anten nas. We had to try one for ourselves
in every case, the K40 either equaled or out-performed its competitor.
No ifs, ands, or buts! The K40 Antenna from American Antenna would have to be just about the best antenna around
CB MAGAZINE: "Introduced in October, 1977, the K40 quickly became the top seller and in mid 1978, became the number one selling antenna in the nation."

... Here's what CB'ers all across the country said.

ANTENNA SPECIALISTS:
truck driver and CB'er for 10 'Big Momma'.
-J.H. Collett, 207 McFee, Bastrop, LA
AVANTI: "I'm an electronic technician with a Second Class FCC license . . . I was able to transmit 70\% further and tune the SWR 75\% lower than my Avanti.'
-H.R. Castro, VRB, Monserrante D-67, Sallinas, Puerto Rico
PAL: ". . . 20\% better in transmission and reception than my $5 / 8$ wave Pal Firestik.'
-John A. Blum, Box 446, Zellienolple, PA
SHAKESPEARE: ". . . I've been a CB'er for three years and the K40 is the best l've ever had. Better in reception and transmission than my Shakespeare.
-H. Bachert. Jt, 15 King Rd., Park Ridge, NJ
HUSTLER: "Compared to my Hustler XBLT4, the K40 can consistently transmit 40\% further and the reception was better. The K40 is the perfect way to complete a CB system -Jerome R. Brown, 7800 S. Linder, Burbank, il
(SPECIAL NOTE) IF YOU'REA BEGINNER:
Our K40 Dealers will be helu py lo sell you any of the old style and less expenslve a nas mat ars great bi gains for any beginning CB^{\prime}) POWERI

[^0]: MINIMUM BILLING $\$ 25.00$. ADD SHIPPING CHARGE $\$ 2.00$. NEW YORK RESIDENTS ADD APPLICABLE TAX.

[^1]: *Senior Applications Engineer, National Semiconductor

